A combinatorial problem related to sparse systems of equations

Nowadays sparse systems of equations occur frequently in science and engineering. In this contribution we deal with sparse systems common in cryptanalysis. Given a cipher system, one converts it into a system of sparse equations, and then the system is solved to retrieve either a key or a plaintext....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Designs, codes, and cryptography Ročník 85; číslo 1; s. 129 - 144
Hlavní autoři: Horak, Peter, Semaev, Igor, Tuza, Zsolt
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2017
Springer Nature B.V
Témata:
ISSN:0925-1022, 1573-7586
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nowadays sparse systems of equations occur frequently in science and engineering. In this contribution we deal with sparse systems common in cryptanalysis. Given a cipher system, one converts it into a system of sparse equations, and then the system is solved to retrieve either a key or a plaintext. Raddum and Semaev proposed new methods for solving such sparse systems common in modern ciphers which are combinations of linear layers and small S-boxes. It turns out that the solution of a combinatorial MaxMinMax problem provides an upper bound on the average computational complexity of those methods. In this paper we initiate the study of a linear algebra variation of the MaxMinMax problem. The complexity bound proved in this paper significantly overcomes conjectured complexity bounds for Gröbner basis type algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-016-0294-4