Real-Time Big Data Stream Processing Using GPU with Spark Over Hadoop Ecosystem
In this technological era, every person, authorities, entrepreneurs, businesses, and many things around us are connected to the internet, forming Internet of thing (IoT). This generates a massive amount of diverse data with very high-speed, termed as big data. However, this data is very useful that...
Uloženo v:
| Vydáno v: | International journal of parallel programming Ročník 46; číslo 3; s. 630 - 646 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7458, 1573-7640 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this technological era, every person, authorities, entrepreneurs, businesses, and many things around us are connected to the internet, forming Internet of thing (IoT). This generates a massive amount of diverse data with very high-speed, termed as big data. However, this data is very useful that can be used as an asset for the businesses, organizations, and authorities to predict future in various aspects. However, efficiently processing Big Data while making real-time decisions is a quite challenging task. Some of the tools like Hadoop are used for Big Datasets processing. On the other hand, these tools could not perform well in the case of real-time high-speed stream processing. Therefore, in this paper, we proposed an efficient and real-time Big Data stream processing approach while mapping Hadoop MapReduce equivalent mechanism on graphics processing units (GPUs). We integrated a parallel and distributed environment of Hadoop ecosystem and a real-time streaming processing tool, i.e., Spark with GPU to make the system more powerful in order to handle the overwhelming amount of high-speed streaming. We designed a MapReduce equivalent algorithm for GPUs for a statistical parameter calculation by dividing overall Big Data files into fixed-size blocks. Finally, the system is evaluated while considering the efficiency aspect (processing time and throughput) using (1) large-size city traffic video data captured by static as well as moving vehicles’ cameras while identifying vehicles and (2) large text-based files, like twitter data files, structural data, etc. Results show that the proposed system working with Spark on top and GPUs under the parallel and distributed environment of Hadoop ecosystem is more efficient and real-time as compared to existing standalone CPU-based MapReduce implementation. |
|---|---|
| AbstractList | In this technological era, every person, authorities, entrepreneurs, businesses, and many things around us are connected to the internet, forming Internet of thing (IoT). This generates a massive amount of diverse data with very high-speed, termed as big data. However, this data is very useful that can be used as an asset for the businesses, organizations, and authorities to predict future in various aspects. However, efficiently processing Big Data while making real-time decisions is a quite challenging task. Some of the tools like Hadoop are used for Big Datasets processing. On the other hand, these tools could not perform well in the case of real-time high-speed stream processing. Therefore, in this paper, we proposed an efficient and real-time Big Data stream processing approach while mapping Hadoop MapReduce equivalent mechanism on graphics processing units (GPUs). We integrated a parallel and distributed environment of Hadoop ecosystem and a real-time streaming processing tool, i.e., Spark with GPU to make the system more powerful in order to handle the overwhelming amount of high-speed streaming. We designed a MapReduce equivalent algorithm for GPUs for a statistical parameter calculation by dividing overall Big Data files into fixed-size blocks. Finally, the system is evaluated while considering the efficiency aspect (processing time and throughput) using (1) large-size city traffic video data captured by static as well as moving vehicles’ cameras while identifying vehicles and (2) large text-based files, like twitter data files, structural data, etc. Results show that the proposed system working with Spark on top and GPUs under the parallel and distributed environment of Hadoop ecosystem is more efficient and real-time as compared to existing standalone CPU-based MapReduce implementation. |
| Author | Paul, Anand Jeon, Gwanggil Son, Hojae Ahmad, Awais Rathore, M. Mazhar |
| Author_xml | – sequence: 1 givenname: M. Mazhar surname: Rathore fullname: Rathore, M. Mazhar organization: School of Computer Science and Engineering, Kyungpook National University – sequence: 2 givenname: Hojae surname: Son fullname: Son, Hojae organization: School of Computer Science and Engineering, Kyungpook National University – sequence: 3 givenname: Awais surname: Ahmad fullname: Ahmad, Awais organization: Department of Information and Communication Engineering, Yeungnam University – sequence: 4 givenname: Anand surname: Paul fullname: Paul, Anand email: paul.editor@gmail.com organization: School of Computer Science and Engineering, Kyungpook National University – sequence: 5 givenname: Gwanggil surname: Jeon fullname: Jeon, Gwanggil organization: Department of Embedded Systems Engineering, Incheon National University |
| BookMark | eNp9kNFOwjAUhhuDiYA-gHdNvK62Xdd2l4oKJiQQgeumGx0W2TrbouHtHc7ExERvzrn5v_-cfAPQq11tALgk-JpgLG4CwYJzhIlAOCUJoiegT1KRIMEZ7oE-ljJFgqXyDAxC2GKMMyFlH8yejd6hpa0MvLMbeK-jhovoja7g3LvChGDrDVx9zfF8BT9sfIGLRvtXOHs3Hk702rkGPhQuHEI01Tk4LfUumIvvPQSrx4flaIKms_HT6HaKioTwiGRWytxgllNWFhyXjHGS0nVGU5wwUqT5muss54xlklCWFCwlkoqyLJnhmpI8GYKrrrfx7m1vQlRbt_d1e1JRTHlCKBe0TYkuVXgXgjelKmzU0bo6em13imB1tKc6e6q1p4721JEkv8jG20r7w78M7ZjQZuuN8T8__Q19AoDcgSQ |
| CitedBy_id | crossref_primary_10_1016_j_scs_2020_102231 crossref_primary_10_64026_JCCN_2025004 crossref_primary_10_1007_s12652_020_02870_7 crossref_primary_10_1016_j_jpdc_2020_01_003 crossref_primary_10_1080_08839514_2020_1842111 crossref_primary_10_1007_s12145_022_00900_w crossref_primary_10_1007_s13198_021_01075_1 crossref_primary_10_1007_s11227_020_03390_z crossref_primary_10_1155_2018_8467413 crossref_primary_10_1109_ACCESS_2019_2956803 crossref_primary_10_1080_09720529_2021_1932918 crossref_primary_10_1109_TSC_2025_3562342 crossref_primary_10_1007_s11042_019_08361_y crossref_primary_10_3103_S0146411619030040 crossref_primary_10_1007_s00354_023_00211_8 crossref_primary_10_1109_ACCESS_2021_3072596 crossref_primary_10_1080_17538947_2024_2368099 crossref_primary_10_1109_ACCESS_2023_3262989 crossref_primary_10_1002_cpe_6736 crossref_primary_10_1007_s00521_023_09160_1 crossref_primary_10_1155_2021_4109794 crossref_primary_10_1007_s00530_020_00680_7 crossref_primary_10_1109_TKDE_2025_3573812 crossref_primary_10_3233_JIFS_189325 crossref_primary_10_1002_cpe_6047 crossref_primary_10_1007_s00500_017_2942_7 crossref_primary_10_1007_s00607_019_00780_x crossref_primary_10_1016_j_scs_2020_102264 crossref_primary_10_1002_cpe_6144 crossref_primary_10_1016_j_heliyon_2025_e41866 crossref_primary_10_1186_s40537_020_00388_5 crossref_primary_10_1007_s42979_022_01110_3 crossref_primary_10_1016_j_procs_2020_09_311 crossref_primary_10_3390_sym13010109 crossref_primary_10_1109_ACCESS_2019_2958377 crossref_primary_10_1016_j_future_2023_08_004 crossref_primary_10_3233_JIFS_230387 crossref_primary_10_3390_rs14030521 crossref_primary_10_1007_s11227_020_03508_3 crossref_primary_10_1007_s10766_017_0531_0 crossref_primary_10_1155_2022_4720169 crossref_primary_10_1007_s00530_020_00695_0 crossref_primary_10_21078_JSSI_2021_016_29 crossref_primary_10_3233_JIFS_189138 crossref_primary_10_1007_s10586_019_02929_x |
| Cites_doi | 10.1137/1.9780898719604 10.1016/j.future.2015.08.004 10.1002/cpe.3403 10.1109/JIOT.2013.2296516 10.1109/JPROC.2008.917757 10.1016/j.jocs.2013.01.004 10.14778/1687553.1687576 10.1006/jpdc.2000.1714 10.1007/s10916-016-0647-6 10.1002/cpe.3504 10.1177/1094342014567907 10.1109/TITS.2013.2246835 10.1016/j.neucom.2015.04.109 10.1145/1327452.1327492 10.1109/TC.2011.112 10.1016/j.comnet.2015.12.023 10.1016/j.jpdc.2008.05.014 10.1145/1654059.1654079 10.1137/1.9780898719642 10.1109/SITIS.2015.121 10.1007/s11042-017-4393-7 10.1007/s10766-017-0498-x 10.1109/MICRO.2006.49 10.1109/IPDPS.2015.56 10.1109/HPCA.2007.346181 10.1145/1787275.1787328 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2017 International Journal of Parallel Programming is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: International Journal of Parallel Programming is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10766-017-0513-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7640 |
| EndPage | 646 |
| ExternalDocumentID | 10_1007_s10766_017_0513_2 |
| GrantInformation_xml | – fundername: BK 21 + grantid: 21A20131600005 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO E.L EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- MS~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c316t-89f8be04b24fc60f446152d9250341c5bd6a9b644981243c451827fff4e6a21b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430305800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7458 |
| IngestDate | Tue Nov 04 22:21:39 EST 2025 Sat Nov 29 01:59:44 EST 2025 Tue Nov 18 22:11:23 EST 2025 Fri Feb 21 02:37:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Big Data Spark GPU Hadoop MapReduce |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-89f8be04b24fc60f446152d9250341c5bd6a9b644981243c451827fff4e6a21b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2026312672 |
| PQPubID | 48389 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2026312672 crossref_citationtrail_10_1007_s10766_017_0513_2 crossref_primary_10_1007_s10766_017_0513_2 springer_journals_10_1007_s10766_017_0513_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20180600 2018-6-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of parallel programming |
| PublicationTitleAbbrev | Int J Parallel Prog |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Rathore, Ahmad, Paul, Wan, Daqiang (CR8) 2016; 40 Rathore, Ahmad, Paul, Rho (CR9) 2016; 101 CR19 Sivaraman, Trivedi (CR5) 2013; 14 CR18 CR39 CR16 CR38 CR15 Dongarra (CR30) 2015; 2015 CR37 CR36 CR13 Che (CR22) 2008; 68 CR35 CR12 CR34 CR32 Ailamaki, Govindaraju, Harizopoulos, Manocha (CR14) 2006; 6 Cohen, Dolan, Dunlap, Hellerstein, Welton (CR1) 2009; 2 CR4 CR3 D’Amore (CR21) 2012; 7 CR6 Owens (CR23) 2008; 96 Ahmad, Paul, Rathore, Chang (CR7) 2016; 56 CR27 Braun (CR31) 2001; 61 Song, Dongarra (CR28) 2015; 27 CR24 Dean, Ghemawat (CR2) 2008; 51 Aldinucci (CR26) 2015; 29 Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Sorensen (CR33) 1999 CR20 Du (CR29) 2013; 4 CR42 CR41 CR40 Shi (CR25) 2012; 61 Cerotti (CR17) 2016; 28 Ahmad, Paul, Rathore (CR10) 2016; 174 Jin, Gubbi, Marusic, Palaniswami (CR11) 2014; 1 A Ahmad (513_CR7) 2016; 56 MM Rathore (513_CR8) 2016; 40 513_CR40 513_CR20 513_CR42 MM Rathore (513_CR9) 2016; 101 513_CR41 513_CR24 L D’Amore (513_CR21) 2012; 7 513_CR27 J Cohen (513_CR1) 2009; 2 P Du (513_CR29) 2013; 4 D Cerotti (513_CR17) 2016; 28 TD Braun (513_CR31) 2001; 61 J Dongarra (513_CR30) 2015; 2015 L Shi (513_CR25) 2012; 61 S Sivaraman (513_CR5) 2013; 14 A Ailamaki (513_CR14) 2006; 6 513_CR32 J Jin (513_CR11) 2014; 1 513_CR13 513_CR35 513_CR12 F Song (513_CR28) 2015; 27 513_CR34 513_CR15 513_CR37 A Ahmad (513_CR10) 2016; 174 513_CR36 513_CR39 513_CR16 513_CR38 513_CR19 513_CR18 E Anderson (513_CR33) 1999 M Aldinucci (513_CR26) 2015; 29 S Che (513_CR22) 2008; 68 J Dean (513_CR2) 2008; 51 JD Owens (513_CR23) 2008; 96 513_CR6 513_CR3 513_CR4 |
| References_xml | – ident: CR18 – year: 1999 ident: CR33 publication-title: LAPACK Users’ Guide doi: 10.1137/1.9780898719604 – volume: 56 start-page: 493 year: 2016 end-page: 503 ident: CR7 article-title: Smart cyber society: integration of capillary devices with high usability based on cyber-physical system publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2015.08.004 – volume: 27 start-page: 3702 issue: 14 year: 2015 end-page: 3723 ident: CR28 article-title: A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3403 – ident: CR4 – volume: 1 start-page: 112 issue: 2 year: 2014 end-page: 121 ident: CR11 article-title: An information framework for creating a smart city through internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2013.2296516 – ident: CR39 – ident: CR16 – volume: 96 start-page: 879 issue: 5 year: 2008 end-page: 899 ident: CR23 article-title: GPU computing publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.917757 – ident: CR37 – ident: CR12 – volume: 4 start-page: 457 issue: 6 year: 2013 end-page: 464 ident: CR29 article-title: Soft error resilient QR factorization for hybrid system with GPGPU publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.01.004 – volume: 7 start-page: 91 issue: 3–4 year: 2012 end-page: 105 ident: CR21 article-title: HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar software publication-title: J. Numer. Anal. Ind. Appl. Math. – volume: 2 start-page: 1481 issue: 2 year: 2009 end-page: 1492 ident: CR1 article-title: Mad skills: new analysis practices for Big Data publication-title: Proc. VLDB Endow. doi: 10.14778/1687553.1687576 – ident: CR35 – ident: CR6 – volume: 61 start-page: 810 issue: 6 year: 2001 end-page: 837 ident: CR31 article-title: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.2000.1714 – volume: 40 start-page: 283 issue: 12 year: 2016 ident: CR8 article-title: Real-time medical emergency response system: exploiting IoT and Big Data for public health publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0647-6 – ident: CR40 – ident: CR27 – ident: CR42 – volume: 28 start-page: 438 issue: 2 year: 2016 end-page: 452 ident: CR17 article-title: Modeling and analysis of performances for concurrent multithread applications on multicore and graphics processing unit systems publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3504 – volume: 2015 start-page: 9 year: 2015 ident: CR30 article-title: Hpc programming on intel many-integrated-core hardware with magma port to xeon phi publication-title: Sci. Program. – ident: CR19 – volume: 29 start-page: 461 issue: 4 year: 2015 end-page: 472 ident: CR26 article-title: Parallel visual data restoration on multi-GPGPUs using stencil-reduce pattern publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/1094342014567907 – volume: 6 start-page: 1267 year: 2006 end-page: 1267 ident: CR14 article-title: Query co-processing on commodity processors publication-title: VLDB – ident: CR3 – ident: CR15 – ident: CR38 – volume: 14 start-page: 906 issue: 2 year: 2013 end-page: 917 ident: CR5 article-title: Integrated lane and vehicle detection, localization, and tracking: a synergistic approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2246835 – volume: 174 start-page: 439 year: 2016 end-page: 453 ident: CR10 article-title: An efficient divide-and-conquer approach for Big Data analytics in machine-to-machine communication publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.109 – ident: CR13 – volume: 51 start-page: 107 issue: 1 year: 2008 end-page: 113 ident: CR2 article-title: Mapreduce: simplified data processing on large clusters publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 61 start-page: 804 issue: 6 year: 2012 end-page: 816 ident: CR25 article-title: vCUDA: GPU-accelerated high-performance computing in virtual machines publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2011.112 – volume: 101 start-page: 63 year: 2016 end-page: 80 ident: CR9 article-title: Urban planning and building smart cities based on the internet of things using Big Data analytics publication-title: Comput. Netw. doi: 10.1016/j.comnet.2015.12.023 – ident: CR41 – volume: 68 start-page: 1370 issue: 10 year: 2008 end-page: 1380 ident: CR22 article-title: A performance study of general-purpose applications on graphics processors using CUDA publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2008.05.014 – ident: CR24 – ident: CR20 – volume: 68 start-page: 1370 issue: 10 year: 2008 ident: 513_CR22 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2008.05.014 – volume: 61 start-page: 810 issue: 6 year: 2001 ident: 513_CR31 publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.2000.1714 – volume: 40 start-page: 283 issue: 12 year: 2016 ident: 513_CR8 publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0647-6 – ident: 513_CR36 doi: 10.1145/1654059.1654079 – ident: 513_CR13 – volume: 7 start-page: 91 issue: 3–4 year: 2012 ident: 513_CR21 publication-title: J. Numer. Anal. Ind. Appl. Math. – ident: 513_CR35 doi: 10.1137/1.9780898719642 – ident: 513_CR34 – ident: 513_CR6 doi: 10.1109/SITIS.2015.121 – ident: 513_CR15 – ident: 513_CR20 – ident: 513_CR3 – ident: 513_CR38 doi: 10.1007/s11042-017-4393-7 – volume: 4 start-page: 457 issue: 6 year: 2013 ident: 513_CR29 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2013.01.004 – volume-title: LAPACK Users’ Guide year: 1999 ident: 513_CR33 doi: 10.1137/1.9780898719604 – ident: 513_CR37 doi: 10.1007/s10766-017-0498-x – volume: 14 start-page: 906 issue: 2 year: 2013 ident: 513_CR5 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2246835 – volume: 27 start-page: 3702 issue: 14 year: 2015 ident: 513_CR28 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3403 – ident: 513_CR24 – ident: 513_CR41 – ident: 513_CR18 doi: 10.1109/MICRO.2006.49 – ident: 513_CR27 doi: 10.1109/IPDPS.2015.56 – volume: 29 start-page: 461 issue: 4 year: 2015 ident: 513_CR26 publication-title: Int. J. High Perform. Comput. Appl. doi: 10.1177/1094342014567907 – ident: 513_CR12 – ident: 513_CR39 – volume: 61 start-page: 804 issue: 6 year: 2012 ident: 513_CR25 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2011.112 – volume: 56 start-page: 493 year: 2016 ident: 513_CR7 publication-title: Future Gen. Comput. Syst. doi: 10.1016/j.future.2015.08.004 – volume: 96 start-page: 879 issue: 5 year: 2008 ident: 513_CR23 publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.917757 – volume: 101 start-page: 63 year: 2016 ident: 513_CR9 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2015.12.023 – volume: 174 start-page: 439 year: 2016 ident: 513_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.109 – volume: 1 start-page: 112 issue: 2 year: 2014 ident: 513_CR11 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2013.2296516 – volume: 51 start-page: 107 issue: 1 year: 2008 ident: 513_CR2 publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – volume: 2 start-page: 1481 issue: 2 year: 2009 ident: 513_CR1 publication-title: Proc. VLDB Endow. doi: 10.14778/1687553.1687576 – ident: 513_CR4 – volume: 28 start-page: 438 issue: 2 year: 2016 ident: 513_CR17 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.3504 – volume: 2015 start-page: 9 year: 2015 ident: 513_CR30 publication-title: Sci. Program. – ident: 513_CR16 doi: 10.1109/HPCA.2007.346181 – ident: 513_CR32 doi: 10.1137/1.9780898719604 – volume: 6 start-page: 1267 year: 2006 ident: 513_CR14 publication-title: VLDB – ident: 513_CR19 doi: 10.1145/1787275.1787328 – ident: 513_CR42 – ident: 513_CR40 |
| SSID | ssj0009788 |
| Score | 2.395163 |
| Snippet | In this technological era, every person, authorities, entrepreneurs, businesses, and many things around us are connected to the internet, forming Internet of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 630 |
| SubjectTerms | Big Data Computer Science Data management Digital media Equivalence Graphics processing units Hand tools High speed Internet Internet of Things Parallel processing Processor Architectures Real time Software Engineering/Programming and Operating Systems Special Issue on Programming Models and Algorithms for Data Analysis in HPC Systems Theory of Computation Video data |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86PXhxfuJ0Sg6elECTtkl7Ej82BWUb6mC3kqSNDHWd2_Tv96VNLQp68dw2hP7ey_u9vC-EjinXYMYzQEAKjwQp9UnMpSHWlMgwzHytikLhO9HrRaNRPHAXbnOXVlmdicVBneba3pFbJ537lHHBzqZvxE6NstFVN0JjGa1QxqiV81tB6qa7opg7CYoUEhGEURXVLEvnBLe-tCAglj5h3-1STTZ_xEcLs9Nt_nfDG2jdEU58XkrIJlrKJluoWQ1zwE63t1H_HigjsRUh-GL8hK_kQmIbspav2BUTwP5wkWGArwdDbC9w8cNUzp5xH9QBwxGW51Pc0XnZHHoHDbudx8sb4qYtEO1TviBRbCKVeYFigdHcM-Angm1PY-BIYOl0qFIuYwX0KbacwNdBCK6JMMYEGZeMKn8XNSb5JNtDOOJKp8IIJmUYKGViqrMwpVIygN73ohbyqn-daNeK3E7EeEnqJsoWngTgSSw8CWuhk69PpmUfjr9ebleQJE4l50mNRwudVqDWj39dbP_vxQ7QGnCoqMwea6PGYvaeHaJV_bEYz2dHhTx-ArnA4pY priority: 102 providerName: ProQuest |
| Title | Real-Time Big Data Stream Processing Using GPU with Spark Over Hadoop Ecosystem |
| URI | https://link.springer.com/article/10.1007/s10766-017-0513-2 https://www.proquest.com/docview/2026312672 |
| Volume | 46 |
| WOSCitedRecordID | wos000430305800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7640 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009788 issn: 0885-7458 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8UfPBF_Iwokj74pGmyr7bboyBoogIBUfRlabvVEBUITP9-r2MTNWqiL02Wdd1yH_3d7Xp3CB3aTAGMx8ABwS3iRbZLAiY0MVAiKI1dJdNE4UveavmDQdDJ8rhn-Wn3PCSZ7tQfkt04M94vJyBILoF9twho5xtt7PZuFpV2edpsErSHEu5RPw9lfrfEZzBaWJhfgqIp1jRL__rKdbSWmZb4ZC4LG2gpHm2iUt62AWdavIXaXTAOicn9wLXhAz4VicAmOC2ecZY2AC_E6VkCfNbpY_OrFvcmYvqI2yD4GDar8XiCG2o8LwO9jfrNxnX9nGR9FYhybZYQP9C-jC1POp5WzNLgEQKKRwFYQ4BpisqIiUCCoRQY9HeVR8EJ4VprL2bCsaW7gwqj8SjeRdhnUkVcc0cI6kmpA1vFNLKFcIDJruWXkZUTOFRZ0XHT--IpXJRLNgQLgWChIVjolNHR-yOTecWN3yZXcq6FmfLNQgf8Std2GIfbxzmXFrd_XGzvT7P30SoYT_782FgFFZLpS3yAVtRrMpxNq2iZ395VUbHWaHW6cHXBCYxXVt2MThvGDr2vppL7BkML3p8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqNReWCigLiytD_RCZSlxHDs5oKq8CmK7oBYkbsF2bISgm-3uQsWf4jd2nEejIpUbh56TjBTPNy_PC2AjFAbNuEUOKBlQnocRTYVy1JsSFcc2MrpsFO7LwSA5P09PZuCh6YXxZZWNTiwVdV4Yf0fug3QRhUxI9mn0k_qtUT672qzQqGBxZO9_Ycg22TrcRf5-YGx_73TngNZbBaiJQjGlSeoSbQOuGXdGBA7jIbRheYq-AGp0E-tcqFSjm5B62xcZHqMLLp1z3ArFQh0h3RcwxzmKgy8VDHbaIb-y3HOJghtTyeOkyaJWrXpS-NhdUhSDiLK_7WDr3D7Kx5Zmbr_zvx3QAszXDjX5XEnAIszY4RvoNMsqSK27luD4G7rE1He8kO2rS7Krpor4lLz6QepmCTwPUlZQkC8nZ8RfUJPvIzW-Jsco7gRVdFGMyJ4pquHXy3D2LL-1ArPDYmjfAkmENrl0kikVc61dGhob56FSDKEdBUkXgoa3malHrfuNHzdZOyTawyFDOGQeDhnrwuafT0bVnJGnXu41EMhqlTPJWv534WMDovbxP4mtPk3sPbw6OP3az_qHg6M1eI3-YlJVyvVgdjq-tevw0txNrybjd6UsELh4bmz9Bgg5PSM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWlW9QOlDXR6tD_RSZDVxYjs5VAi6bEGgZVWKhHoJtmNXq5bNsrsU8df4dYzzICpSuXHgnMRS7G--mfG8ANZDYVCNWzwBJQMa52FEU6Ec9apEcW4jo8tC4QPZ7ycnJ-lgDq6bWhifVtlwYknUeWH8Hbl30kUUMiHZZ1enRQy6vc3xOfUTpHyktRmnUUFk315dovs2_bLXxbP-yFhv58fXXVpPGKAmCsWMJqlLtA1izWJnRODQN0J9lqdoFyC7G65zoVKNJkPq9WBkYo7muHTOxVYoFuoI130CTyX6mN7xG_CfbcNfWc68RCHmVMY8aSKqVdmeFN6PlxRFIqLsX53YGrp3YrOlyustPubNegkLtaFNtirJWII5O3oFi80QC1Jz2ms4_I6mMvWVMGR7-It01UwRH6pXZ6QuosC9IWVmBfk2OCb-4pocjdXkNzlEGiBI3UUxJjumqJpiv4HjB_mttzA_Kkb2HZBEaJNLJ5lSPNbapaGxPA-VYgj5KEg6EDTnnJm6BbufBPIna5tHe2hkCI3MQyNjHfh0-8m46j9y38urDRyymoqmWYuFDmw0gGof_3ex5fsX-wDPEVLZwV5_fwVeoBmZVAl0qzA_m1zYNXhm_s6G08n7UiwInD40tG4AYcxGNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Big+Data+Stream+Processing+Using+GPU+with+Spark+Over+Hadoop+Ecosystem&rft.jtitle=International+journal+of+parallel+programming&rft.au=Rathore%2C+M.+Mazhar&rft.au=Son%2C+Hojae&rft.au=Ahmad%2C+Awais&rft.au=Paul%2C+Anand&rft.date=2018-06-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=46&rft.issue=3&rft.spage=630&rft.epage=646&rft_id=info:doi/10.1007%2Fs10766-017-0513-2&rft.externalDocID=10_1007_s10766_017_0513_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon |