Terrain-Relative Navigation With Neuro-Inspired Elevation Encoding

Terrain-relative navigation (TRN) encompasses a wide variety of algorithms that perform localization with respect to the terrain below a flying vehicle. In traditional approaches, measurements of the terrain are matched to a map carried onboard. This work presents a TRN filter with a position measur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on aerospace and electronic systems Ročník 60; číslo 3; s. 3368 - 3378
Hlavní autoři: Michaelson, Kristen A., Wang, Felix, Zanetti, Renato
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9251, 1557-9603
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Terrain-relative navigation (TRN) encompasses a wide variety of algorithms that perform localization with respect to the terrain below a flying vehicle. In traditional approaches, measurements of the terrain are matched to a map carried onboard. This work presents a TRN filter with a position measurement inspired by neural activity associated with positioning in nature. The filter is shown to produce accurate position measurements that outperform popular optimization and template matching methods given poor prior knowledge of the position. The proposed method is also better-suited to distributed implementation than optimization-based methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SAND-2024-05437J
NA0003525
USDOE Laboratory Directed Research and Development (LDRD) Program
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2024.3362760