Performance Evaluation of GPU-Accelerated Spatial Interpolation Using Radial Basis Functions for Building Explicit Surfaces
This paper focuses on evaluating the computational performance of parallel spatial interpolation with Radial Basis Functions (RBFs) that is developed by utilizing modern GPUs. The RBFs can be used in spatial interpolation to build explicit surfaces such as Discrete Elevation Models. When interpolati...
Uloženo v:
| Vydáno v: | International journal of parallel programming Ročník 46; číslo 5; s. 963 - 991 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7458, 1573-7640 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper focuses on evaluating the computational performance of parallel spatial interpolation with Radial Basis Functions (RBFs) that is developed by utilizing modern GPUs. The RBFs can be used in spatial interpolation to build explicit surfaces such as Discrete Elevation Models. When interpolating with large-size of data points and interpolated points for building explicit surfaces, the computational cost would be quite expensive. To improve the computational efficiency, we specifically develop a parallel RBF spatial interpolation algorithm on many-core GPUs, and compare it with the parallel version implemented on multi-core CPUs. Five groups of experimental tests are conducted on two machines to evaluate the computational efficiency of the presented GPU-accelerated RBF spatial interpolation algorithm. Experimental results indicate that: in most cases, the parallel RBF interpolation algorithm on many-core GPUs does not have any significant advantages over the parallel version on multi-core CPUs in terms of computational efficiency. This unsatisfied performance of the GPU-accelerated RBF interpolation algorithm is due to: (1) the limited size of global memory residing on the GPU, and (2) the need to solve a system of linear equations in each GPU thread to calculate the weights and prediction value of each interpolated point. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7458 1573-7640 |
| DOI: | 10.1007/s10766-017-0538-6 |