Sparse Proximal Support Vector Machine with a Specialized Interior-Point Method

Support vector machine (SVM) is a widely used method for classification. Proximal support vector machine (PSVM) is an extension of SVM and a promising method to lead to a fast and simple algorithm for generating a classifier. Motivated by the fast computational efforts of PSVM and the properties of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Operations Research Society of China (Internet) Vol. 3; no. 1; pp. 1 - 15
Main Authors: Bai, Yan-Qin, Zhu, Zhao-Ying, Yan, Wen-Li
Format: Journal Article
Language:English
Published: Heidelberg Operations Research Society of China 01.03.2015
Springer Nature B.V
Subjects:
ISSN:2194-668X, 2194-6698
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Support vector machine (SVM) is a widely used method for classification. Proximal support vector machine (PSVM) is an extension of SVM and a promising method to lead to a fast and simple algorithm for generating a classifier. Motivated by the fast computational efforts of PSVM and the properties of sparse solution yielded by ℓ 1 -norm, in this paper, we first propose a PSVM with a cardinality constraint which is eventually relaxed by ℓ 1 -norm and leads to a trade-off ℓ 1 - ℓ 2 regularized sparse PSVM. Next we convert this ℓ 1 - ℓ 2 regularized sparse PSVM into an equivalent form of ℓ 1 regularized least squares (LS) and solve it by a specialized interior-point method proposed by Kim et al. (J Sel Top Signal Process 12:1932–4553, 2007 ). Finally, ℓ 1 - ℓ 2 regularized sparse PSVM is illustrated by means of a real-world dataset taken from the University of California, Irvine Machine Learning Repository (UCI Repository). Moreover, we compare the numerical results with the existing models such as generalized eigenvalue proximal SVM (GEPSVM), PSVM, and SVM-Light. The numerical results show that the ℓ 1 - ℓ 2 regularized sparse PSVM achieves not only better accuracy rate of classification than those of GEPSVM, PSVM, and SVM-Light, but also a sparser classifier compared with the ℓ 1 -PSVM.
AbstractList Support vector machine (SVM) is a widely used method for classification. Proximal support vector machine (PSVM) is an extension of SVM and a promising method to lead to a fast and simple algorithm for generating a classifier. Motivated by the fast computational efforts of PSVM and the properties of sparse solution yielded by ℓ1-norm, in this paper, we first propose a PSVM with a cardinality constraint which is eventually relaxed by ℓ1-norm and leads to a trade-off ℓ1-ℓ2 regularized sparse PSVM. Next we convert this ℓ1-ℓ2 regularized sparse PSVM into an equivalent form of ℓ1 regularized least squares (LS) and solve it by a specialized interior-point method proposed by Kim et al. (J Sel Top Signal Process 12:1932–4553, 2007). Finally, ℓ1-ℓ2 regularized sparse PSVM is illustrated by means of a real-world dataset taken from the University of California, Irvine Machine Learning Repository (UCI Repository). Moreover, we compare the numerical results with the existing models such as generalized eigenvalue proximal SVM (GEPSVM), PSVM, and SVM-Light. The numerical results show that the ℓ1-ℓ2 regularized sparse PSVM achieves not only better accuracy rate of classification than those of GEPSVM, PSVM, and SVM-Light, but also a sparser classifier compared with the ℓ1-PSVM.
Support vector machine (SVM) is a widely used method for classification. Proximal support vector machine (PSVM) is an extension of SVM and a promising method to lead to a fast and simple algorithm for generating a classifier. Motivated by the fast computational efforts of PSVM and the properties of sparse solution yielded by ℓ 1 -norm, in this paper, we first propose a PSVM with a cardinality constraint which is eventually relaxed by ℓ 1 -norm and leads to a trade-off ℓ 1 - ℓ 2 regularized sparse PSVM. Next we convert this ℓ 1 - ℓ 2 regularized sparse PSVM into an equivalent form of ℓ 1 regularized least squares (LS) and solve it by a specialized interior-point method proposed by Kim et al. (J Sel Top Signal Process 12:1932–4553, 2007 ). Finally, ℓ 1 - ℓ 2 regularized sparse PSVM is illustrated by means of a real-world dataset taken from the University of California, Irvine Machine Learning Repository (UCI Repository). Moreover, we compare the numerical results with the existing models such as generalized eigenvalue proximal SVM (GEPSVM), PSVM, and SVM-Light. The numerical results show that the ℓ 1 - ℓ 2 regularized sparse PSVM achieves not only better accuracy rate of classification than those of GEPSVM, PSVM, and SVM-Light, but also a sparser classifier compared with the ℓ 1 -PSVM.
Author Yan, Wen-Li
Bai, Yan-Qin
Zhu, Zhao-Ying
Author_xml – sequence: 1
  givenname: Yan-Qin
  surname: Bai
  fullname: Bai, Yan-Qin
  email: yqbai@shu.edu.cn
  organization: Department of Mathematics, Shanghai University
– sequence: 2
  givenname: Zhao-Ying
  surname: Zhu
  fullname: Zhu, Zhao-Ying
  organization: Department of Mathematics, Shanghai University
– sequence: 3
  givenname: Wen-Li
  surname: Yan
  fullname: Yan, Wen-Li
  organization: Department of Mathematics, Shanghai University
BookMark eNp9kE1LAzEQhoNUsNb-AG8Bz6v53M0epfhRaKlQFW8hm83ayJqsSYofv94tKwqCnmYO88w78xyCkfPOAHCM0SlGqDiLDFHEM4RZhlAuMr4HxgSXLMvzUoy-e_FwAKYx2gpxIjjPER6D1bpTIRp4E_ybfVYtXG-7zocE741OPsCl0hvrDHy1aQMVXHdGW9XaD1PDuUsmWB-yG29dgkuTNr4-AvuNaqOZftUJuLu8uJ1dZ4vV1Xx2vsg0xXnK-nhd8wIVjAqOi0ZTaipWGqErpVWNKpwzUjWYFqQpiKLMKFGSBue5EU1NBJ2Ak2FvF_zL1sQkn_w2uD5SkpIKwhkmrJ_Cw5QOPsZgGtmF_svwLjGSO3VyUCd7dXKnTvKeKX4x2iaVrHcpKNv-S5KBjH2KezTh56a_oU-IpoQt
CitedBy_id crossref_primary_10_1007_s40305_018_00239_4
crossref_primary_10_1007_s40305_021_00354_9
crossref_primary_10_1007_s40305_015_0090_2
crossref_primary_10_1186_s13660_023_02938_w
crossref_primary_10_1007_s40305_025_00627_7
crossref_primary_10_12677_AAM_2021_1012483
crossref_primary_10_1007_s11042_016_4087_6
Cites_doi 10.1007/s40305-014-0037-z
10.1109/TIT.2006.871582
10.1142/5089
10.1109/TPAMI.2006.17
10.1080/02331934.2011.611515
10.1007/978-1-4757-2440-0
10.1016/j.procs.2010.04.272
10.1137/S1064827596304010
10.1109/TIT.2005.862083
10.1002/cpa.20124
10.1023/A:1018628609742
10.1145/502512.502527
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-Verlag Berlin Heidelberg 2015
Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-Verlag Berlin Heidelberg 2015
– notice: Operations Research Society of China, Periodicals Agency of Shanghai University, and Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
3V.
7RO
7XB
8AI
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AXJJW
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FREBS
FRNLG
HCIFZ
K60
K6~
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s40305-014-0068-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Asian Business Database
ProQuest Central (purchase pre-March 2016)
Asian Business Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Asian & European Business Collection
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Asian & European Business Collection (Alumni)
Business Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Asian Business & Reference
Asian & European Business Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Asian & European Business Collection (Alumni)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Asian Business and Reference (Alumni Edition)
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Business Premium Collection
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: AXJJW
  name: Asian & European Business Collection
  url: https://search.proquest.com/asianeuropeanbusiness
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2194-6698
EndPage 15
ExternalDocumentID 10_1007_s40305_014_0068_5
GroupedDBID -EM
0R~
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXJJW
AXYYD
AZFZN
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
CCPQU
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HCIFZ
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PQBIZ
PQBZA
PQQKQ
PT4
PTHSS
RLLFE
ROL
RSV
SCL
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
3V.
7RO
7XB
8AI
8FE
8FG
8FK
K60
K6~
L6V
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-855cd5707438517fc33eb49e8cbacad0b1642bf1372f72a34ea892f166e8fd283
IEDL.DBID BENPR
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2194-668X
IngestDate Wed Nov 05 04:07:41 EST 2025
Tue Nov 18 22:28:56 EST 2025
Sat Nov 29 05:55:47 EST 2025
Fri Feb 21 02:27:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 90C20
90C10
49M20
65K05
Classification accuracy
Proximal support vector machine
Preconditioned conjugate gradients algorithm
Interior-point methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-855cd5707438517fc33eb49e8cbacad0b1642bf1372f72a34ea892f166e8fd283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2938254124
PQPubID 2043982
PageCount 15
ParticipantIDs proquest_journals_2938254124
crossref_primary_10_1007_s40305_014_0068_5
crossref_citationtrail_10_1007_s40305_014_0068_5
springer_journals_10_1007_s40305_014_0068_5
PublicationCentury 2000
PublicationDate 20150300
2015-3-00
20150301
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 3
  year: 2015
  text: 20150300
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Journal of the Operations Research Society of China (Internet)
PublicationTitleAbbrev J. Oper. Res. Soc. China
PublicationYear 2015
Publisher Operations Research Society of China
Springer Nature B.V
Publisher_xml – name: Operations Research Society of China
– name: Springer Nature B.V
References Vapnik (CR20) 1998
Kim, Koh, Boyd (CR12) 2007; 12
Chen, Tian (CR7) 2012; 1
Cands (CR4) 2006; 3
CR18
Bai, Chen, Niu (CR1) 2012; 8
Bai, Shen, Shen (CR3) 2014; 2
Donoho (CR10) 2006; 52
CR14
Chen, Donoho, Saunders (CR8) 1998; 20
Cands, Romberg, Tao (CR6) 2006; 59
CR11
Vapnik (CR19) 1995
Suykens (CR17) 2002
Deng, Tian, Zhang (CR9) 2013
Suykens, Vandewalle (CR16) 1999; 9
Bai, Niu, Chen (CR2) 2013; 62
Cands, Romberg, Tao (CR5) 2006; 52
Mangasarian, Wild (CR13) 2006; 28
Nocedal, Wright (CR15) 2006
YQ Bai (68_CR3) 2014; 2
YQ Bai (68_CR2) 2013; 62
EJ Cands (68_CR6) 2006; 59
JAK Suykens (68_CR16) 1999; 9
VN Vapnik (68_CR19) 1995
EJ Cands (68_CR5) 2006; 52
SS Chen (68_CR8) 1998; 20
EJ Cands (68_CR4) 2006; 3
68_CR18
WJ Chen (68_CR7) 2012; 1
DL Donoho (68_CR10) 2006; 52
NY Deng (68_CR9) 2013
OL Mangasarian (68_CR13) 2006; 28
VN Vapnik (68_CR20) 1998
SJ Kim (68_CR12) 2007; 12
68_CR14
68_CR11
JAK Suykens (68_CR17) 2002
J Nocedal (68_CR15) 2006
YQ Bai (68_CR1) 2012; 8
References_xml – ident: CR18
– volume: 2
  start-page: 57
  year: 2014
  end-page: 74
  ident: CR3
  article-title: Consensus proximal support vector machine for classification problems with sparse solutions
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-014-0037-z
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: CR10
  article-title: Compressed sensing
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.2006.871582
– year: 2013
  ident: CR9
  publication-title: Support Vector Machines
– year: 2002
  ident: CR17
  publication-title: Least Squares Support Vector Machines
  doi: 10.1142/5089
– ident: CR14
– volume: 28
  start-page: 69
  issue: 1
  year: 2006
  end-page: 74
  ident: CR13
  article-title: Multisurface proximal support vector machine classification via generalized eigenvalues
  publication-title: Pattern Anal Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2006.17
– ident: CR11
– volume: 62
  start-page: 561
  issue: 4
  year: 2013
  ident: CR2
  article-title: New SDP models for protein homology detection with semi-supervised SVM
  publication-title: Optimization
  doi: 10.1080/02331934.2011.611515
– year: 1995
  ident: CR19
  publication-title: The Nature of Statistical Learning Theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 8
  start-page: 3
  issue: 1
  year: 2012
  ident: CR1
  article-title: SDP relaxation for semi-supervised support vector machine
  publication-title: Pac. J. Optim.
– volume: 1
  start-page: 2417
  year: 2012
  end-page: 2423
  ident: CR7
  article-title: -norm proximal support vector machine and its applications
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2010.04.272
– year: 2006
  ident: CR15
  publication-title: Numerical Optimization
– volume: 20
  start-page: 33
  issue: 1
  year: 1998
  end-page: 61
  ident: CR8
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596304010
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  ident: CR5
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.2005.862083
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  end-page: 1223
  ident: CR6
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: CR16
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett.
  doi: 10.1023/A:1018628609742
– volume: 3
  start-page: 1433
  year: 2006
  end-page: 1452
  ident: CR4
  article-title: Compressive sampling
  publication-title: Proc. Int. Congress Math.
– year: 1998
  ident: CR20
  publication-title: Statistical Learning Theory
– volume: 12
  start-page: 1932
  year: 2007
  end-page: 4553
  ident: CR12
  article-title: An interior-point method for large-scale -regularized least square
  publication-title: J. Sel. Topics Signal Process.
– ident: 68_CR14
– volume: 8
  start-page: 3
  issue: 1
  year: 2012
  ident: 68_CR1
  publication-title: Pac. J. Optim.
– volume: 28
  start-page: 69
  issue: 1
  year: 2006
  ident: 68_CR13
  publication-title: Pattern Anal Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2006.17
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  ident: 68_CR5
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.2005.862083
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 68_CR10
  publication-title: Inf. Theory IEEE Trans.
  doi: 10.1109/TIT.2006.871582
– volume-title: Least Squares Support Vector Machines
  year: 2002
  ident: 68_CR17
  doi: 10.1142/5089
– volume: 2
  start-page: 57
  year: 2014
  ident: 68_CR3
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-014-0037-z
– volume: 62
  start-page: 561
  issue: 4
  year: 2013
  ident: 68_CR2
  publication-title: Optimization
  doi: 10.1080/02331934.2011.611515
– volume: 12
  start-page: 1932
  year: 2007
  ident: 68_CR12
  publication-title: J. Sel. Topics Signal Process.
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: 68_CR19
  doi: 10.1007/978-1-4757-2440-0
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 68_CR20
– volume: 1
  start-page: 2417
  year: 2012
  ident: 68_CR7
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2010.04.272
– volume: 9
  start-page: 293
  year: 1999
  ident: 68_CR16
  publication-title: Neural Process Lett.
  doi: 10.1023/A:1018628609742
– volume-title: Support Vector Machines
  year: 2013
  ident: 68_CR9
– ident: 68_CR11
  doi: 10.1145/502512.502527
– volume-title: Numerical Optimization
  year: 2006
  ident: 68_CR15
– ident: 68_CR18
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: 68_CR6
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 3
  start-page: 1433
  year: 2006
  ident: 68_CR4
  publication-title: Proc. Int. Congress Math.
– volume: 20
  start-page: 33
  issue: 1
  year: 1998
  ident: 68_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596304010
SSID ssib052855601
ssj0002962227
Score 2.0258174
Snippet Support vector machine (SVM) is a widely used method for classification. Proximal support vector machine (PSVM) is an extension of SVM and a promising method...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classification
Classifiers
Eigenvalues
Feature selection
Machine learning
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Optimization
Original Paper
Repositories
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdPSqDNR5seRRwe3BxOx24lTVMo6Da6KeJf70vWdioq6LHkg_Lykvd7eXnvh9CpTLlPQ-0RypQgXCmfSJ6kJAVT4QXGC7XjTxnchN2uHA6jXpnHPa1eu1chSXdS18lu3OomuL6c2LwGIpbRClg7aXfjXX9QKZGgUoigjKXa45hGgc33tCRz4LCTIJDDKrr53ayf7dMCdH6Jkzrz0978149voY0SbeKLuXpsoyUz2kHrH2oQwlenLtw63UW3_Ql4ugb3ivFr_gRDLesnIHQ8cLf7uOPeXhpsr2-xwiV7ff5mUuzuFvNxQXrjfDTDHUdNvYce2lf3l9ek5FwgmvnBjIDwdCpCCywAi4WZZswkPDJSJ0qr1EvAvaJJ5rOQZiFVjBslI5r5QWBklgJW2UeN0XhkDhBONOx3bjyWMcMZzVTkJYAfuBRcJ74yTeRVko51WZDc8mI8xnUpZSe5GCQXW8nFoonO6iGTeTWO3zq3quWLy405jQHdWJ8YUE0TnVfLtWj-cbLDP_U-QmsArMT8rVoLNWbFszlGq_pllk-LE6ev78G24HM
  priority: 102
  providerName: Springer Nature
Title Sparse Proximal Support Vector Machine with a Specialized Interior-Point Method
URI https://link.springer.com/article/10.1007/s40305-014-0068-5
https://www.proquest.com/docview/2938254124
Volume 3
WOSCitedRecordID wos000363900400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Asian & European Business Collection
  customDbUrl:
  eissn: 2194-6698
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: AXJJW
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/asianeuropeanbusiness
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2194-6698
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2194-6698
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2194-6698
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002962227
  issn: 2194-668X
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BwgEOvCtCS7QHTq1W2Puw16eqoFaoatOoKSE3a71eS5YgDkmoKn49M866KUj0wsUXr1fyzuzON4-dD-C9KVUsUhdxIa3mytqYG1WUvERTESU-Sl3LnzI9S0cjM5tl4xBwW4Wyyu5MbA_qsnEUI_-AZomcGTRHh4sfnFijKLsaKDQeQp86lake9D8ej8aXnUZpYbROQmKVzmaRJXT5kxjncDhPEjPrUp10n06R-qN3rThdneD6T2O1RaB_JU1bW3Ty7H__4jk8DSiUHW3U5gU88POX8OROb8JXcDFZoM_r2XjZ3NTfcTDxfyJWZ9M2zs_O2ypMzyiQyywLPPb1L1-yNspYN0s-bur5mp23JNWv4cvJ8dWnzzywL3An42TNceVcqVOCGIjK0spJ6QuVeeMK62wZFehoiaKKZSqqVFipvDWZqOIk8aYqEbXsQG_ezP0bYIXDna98JCvplRSVzaICkYQyWrkitn4AUbfMuQutyYkh41t-21S5lUyOkslJMrkewP7tJ4tNX477Bu910sjDFl3lW1EM4KCT5_b1Pyd7e_9ku_AYMZXelKntQW-9_OnfwSN3va5XyyH0j2anp1-HQU-HVGo6weflZPob59XrmQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48CwiUGAPcAGtau_DXh9QVUGrPpIQqaXk5q7Xa8kSxCEJr_6o_sbOOHZTkOitB85ej2TP7HwzOzvzAbwyuQpF7AIupNVcWRtyo7Kc5wgVQeSD2NX8Kce9eDAwo1EyXIGztheGrlW2PrF21Hnl6Ix8A2GJkhmEo83JN06sUVRdbSk0FmZx4H__xJRt9m7vA-r3tRA720fvd3nDKsCdDKM5N1q7XMcEncRLXzgpfaYSb1xmnc2DDBMIkRWhjEURCyuVtyYRRRhF3hQ5ojHKvQGrSmIi1YHVrdH-_ufWgrVA6VFTyCUsEElEzabEcBcmikeRGbWlVerfU7TdMJtXnFo1uP4THJcR719F2hr7du79b3_tPtxtomy2tdgWD2DFjx_CnUuzFx_Bx8MJ5vSeDafVr_IrLiZ-U8xF2HFdx2D9-papZ3RQzSw7nHgqLpSnPmf1KWpZTfmwKsdz1q9JuNfg07V80WPojKuxfwIsc-jZlA9kIb2SorBJkGGkpIxWLgut70LQqjV1zeh1YgD5kl4Mja4tIUVLSMkSUt2FNxevTBZzR65avN5qP21c0Cxdqr4Lb1v7WT7-p7CnVwt7Cbd2j_q9tLc3OHgGtzF-1IsreevQmU-_--dw0_2Yl7Ppi2ZvMDi5bsM6B_L3RLk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-NDqHxwBgwrcDAD3sCWST-SJzHaVBtou0qAVXfIsdxpEiQVm2GEH895zRpBwIkxGMU21LOF9_vfB8_gB8qFT4LjUcZ15IKrX2qRJLSFE2FF1gvNBV_yrAb9vtqNIoGNc_prMl2b0KS85oG16WpKE8maXayKHwTTk_RDRbU1ThQuQIfheMMcu76xbBRKMmUlEEdV3VHM4sCV_vpCOfQeadBoEZNpPO5VR_bqiUAfRIzrUxR5_O7P2ITNmoUSn7O1eYLfLDFFqz_15sQn3qLhq6zbfh7MUEP2JLBdHyX3-BUxwaKyJ0Mq1t_0qtyMi1x17pEk5rVPr-3KanuHPPxlA7GeVGSXkVZvQNXnbPLX79pzcVADfeDkqIgTSpDBzgQo4WZ4dwmIrLKJNro1EvQ7WJJ5vOQZSHTXFitIpb5QWBVliKG-QqtYlzYb0ASg-eAsB7PuBWcZTryEsQVQklhEl_bNniN1GNTNyp3fBnX8aLFciW5GCUXO8nFsg1HiymTeZeO1wbvN1sZ1z_sLEbU43xlRDttOG62bvn6xcV23zT6ENYGp524-6d_vgefEHvJeTrbPrTK6T_7HVbNbZnPpgeVGj8ARPLsOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Proximal+Support+Vector+Machine+with+a+Specialized+Interior-Point+Method&rft.jtitle=Journal+of+the+Operations+Research+Society+of+China+%28Internet%29&rft.au=Bai%2C+Yan-Qin&rft.au=Zhu%2C+Zhao-Ying&rft.au=Yan%2C+Wen-Li&rft.date=2015-03-01&rft.issn=2194-668X&rft.eissn=2194-6698&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1007%2Fs40305-014-0068-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40305_014_0068_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-668X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-668X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-668X&client=summon