Singular support of minimizers of the causal variational principle on the sphere

The support of minimizing measures of the causal variational principle on the sphere is analyzed. It is proven that in the case τ > 3 , the support of every minimizing measure is contained in a finite number of real analytic curves which intersect at a finite number of points. In the case τ >...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Calculus of variations and partial differential equations Ročník 58; číslo 6; s. 1 - 27
Hlavní autoři: Bäuml, Lucia, Finster, Felix, Schiefeneder, Daniela, von der Mosel, Heiko
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Témata:
ISSN:0944-2669, 1432-0835
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The support of minimizing measures of the causal variational principle on the sphere is analyzed. It is proven that in the case τ > 3 , the support of every minimizing measure is contained in a finite number of real analytic curves which intersect at a finite number of points. In the case τ > 6 , the support is proven to have Hausdorff dimension at most 6 / 7.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-019-1652-7