Geometric multigrid algorithms for elliptic interface problems using structured grids
In this work, we develop geometric multigrid algorithms for the immersed finite element methods for elliptic problems with interface (Chou et al. Adv. Comput. Math. 33 , 149–168 2010 ; Kwak and Lee, Int. J. Pure Appl. Math. 104 , 471–494 2015 ; Li et al. Numer. Math. 96 , 61–98 2003 , 2004 ; Lin et...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 81; číslo 1; s. 211 - 235 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this work, we develop geometric multigrid algorithms for the immersed finite element methods for elliptic problems with interface (Chou et al. Adv. Comput. Math.
33
, 149–168
2010
; Kwak and Lee, Int. J. Pure Appl. Math.
104
, 471–494
2015
; Li et al. Numer. Math.
96
, 61–98
2003
,
2004
; Lin et al. SIAM J. Numer. Anal.
53
, 1121–1144
2015
). We need to design the transfer operators between levels carefully, since the residuals of finer grid problems do not satisfy the flux condition once projected onto coarser grids. Hence, we have to modify the projected residuals so that the flux conditions are satisfied. Similarly, the correction has to be modified after prolongation. Two algorithms are suggested: one for finite element spaces having vertex degrees of freedom and the other for edge average degrees of freedom. For the second case, we use the idea of conforming subspace correction used for
P
1
nonconforming case (Lee
1993
). Numerical experiments show the optimal scalability in terms of number of arithmetic operations, i.e.,
O
(
N
)
for
V
-cycle and CG algorithms preconditioned with
V
-cycle. In
V
-cycle, we used only one Gauss-Seidel smoothing. The CPU times are also reported. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-018-0544-9 |