Boundary-Nonregular Functions in the Disc Algebra and in Holomorphic Lipschitz Spaces

We prove in this paper the existence of dense linear subspaces in the classical holomorphic Lipschitz spaces in the disc all of whose non-null functions are nowhere differentiable at the boundary. Infinitely generated free algebras as well as infinite dimensional Banach spaces consisting of Lipschit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mediterranean journal of mathematics Ročník 15; číslo 3; s. 1 - 20
Hlavní autoři: Bernal-González, L., Bonilla, A., López-Salazar, J., Seoane-Sepúlveda, J. B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2018
Springer Nature B.V
Témata:
ISSN:1660-5446, 1660-5454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove in this paper the existence of dense linear subspaces in the classical holomorphic Lipschitz spaces in the disc all of whose non-null functions are nowhere differentiable at the boundary. Infinitely generated free algebras as well as infinite dimensional Banach spaces consisting of Lipschitz functions enjoying the mentioned property almost everywhere on the boundary are also exhibited. It is also investigated the algebraic size of the family of functions in the disc algebra that either do not preserve Borel sets on the unit circle or possess the Cantor boundary behavior on the disc.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-018-1160-6