Parallel Implementation of a Machine Learning Algorithm on GPU

The capability for understanding data passes through the ability of producing an effective and fast classification of the information in a time frame that allows to keep and preserve the value of the information itself and its potential. Machine learning explores the study and construction of algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of parallel programming Ročník 46; číslo 5; s. 923 - 942
Hlavní autoři: Cuomo, Salvatore, De Michele, Pasquale, Di Nardo, Emanuel, Marcellino, Livia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2018
Springer Nature B.V
Témata:
ISSN:0885-7458, 1573-7640
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The capability for understanding data passes through the ability of producing an effective and fast classification of the information in a time frame that allows to keep and preserve the value of the information itself and its potential. Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. A powerful tool is provided by self-organizing maps (SOM). The goal of learning in the self-organizing map is to cause different parts of the network to respond similarly to certain input patterns. Because of its time complexity, often using this method is a critical challenge. In this paper we propose a parallel implementation for the SOM algorithm, using parallel processor architecture, as modern graphics processing units by CUDA. Experimental results show improvements in terms of execution time, with a promising speed up, compared to the CPU version and the widely used package SOM_PAK.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-017-0554-6