Parallel Implementation of a Machine Learning Algorithm on GPU
The capability for understanding data passes through the ability of producing an effective and fast classification of the information in a time frame that allows to keep and preserve the value of the information itself and its potential. Machine learning explores the study and construction of algori...
Uložené v:
| Vydané v: | International journal of parallel programming Ročník 46; číslo 5; s. 923 - 942 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.10.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0885-7458, 1573-7640 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The capability for understanding data passes through the ability of producing an effective and fast classification of the information in a time frame that allows to keep and preserve the value of the information itself and its potential. Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. A powerful tool is provided by self-organizing maps (SOM). The goal of learning in the self-organizing map is to cause different parts of the network to respond similarly to certain input patterns. Because of its time complexity, often using this method is a critical challenge. In this paper we propose a parallel implementation for the SOM algorithm, using parallel processor architecture, as modern graphics processing units by CUDA. Experimental results show improvements in terms of execution time, with a promising speed up, compared to the CPU version and the widely used package SOM_PAK. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7458 1573-7640 |
| DOI: | 10.1007/s10766-017-0554-6 |