Guaranteeing spoof-resilient multi-robot networks

Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots Jg. 41; H. 6; S. 1383 - 1400
Hauptverfasser: Gil, Stephanie, Kumar, Swarun, Mazumder, Mark, Katabi, Dina, Rus, Daniela
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2017
Springer Nature B.V
Schlagworte:
ISSN:0929-5593, 1573-7527
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a large number of fake clients. This paper proposes a new solution to defend against the Sybil attack, without requiring expensive cryptographic key-distribution. Our core contribution is a novel algorithm implemented on commercial Wi-Fi radios that can “sense” spoofers using the physics of wireless signals. We derive theoretical guarantees on how this algorithm bounds the impact of the Sybil Attack on a broad class of multi-robot problems, including locational coverage and unmanned delivery. We experimentally validate our claims using a team of AscTec quadrotor servers and iRobot Create ground clients, and demonstrate spoofer detection rates over 96%.
AbstractList Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a large number of fake clients. This paper proposes a new solution to defend against the Sybil attack, without requiring expensive cryptographic key-distribution. Our core contribution is a novel algorithm implemented on commercial Wi-Fi radios that can “sense” spoofers using the physics of wireless signals. We derive theoretical guarantees on how this algorithm bounds the impact of the Sybil Attack on a broad class of multi-robot problems, including locational coverage and unmanned delivery. We experimentally validate our claims using a team of AscTec quadrotor servers and iRobot Create ground clients, and demonstrate spoofer detection rates over 96%.
Author Katabi, Dina
Gil, Stephanie
Kumar, Swarun
Rus, Daniela
Mazumder, Mark
Author_xml – sequence: 1
  givenname: Stephanie
  surname: Gil
  fullname: Gil, Stephanie
  email: sgil@mit.edu
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Swarun
  surname: Kumar
  fullname: Kumar, Swarun
  organization: Carnegie Mellon University
– sequence: 3
  givenname: Mark
  surname: Mazumder
  fullname: Mazumder, Mark
  organization: MIT Lincoln Laboratory
– sequence: 4
  givenname: Dina
  surname: Katabi
  fullname: Katabi, Dina
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Daniela
  surname: Rus
  fullname: Rus, Daniela
  organization: Massachusetts Institute of Technology
BookMark eNp9kMFKAzEURYNUsK1-gLuC6-hLJpnMLKVoFQQ3ug6ZzJuSOk1qkkH8e6eMIAi6ept77n2cBZn54JGQSwbXDEDdJAaSCQpM0brkjMoTMmdSFVRJrmZkDjWvqZR1cUYWKe0AoFYAc8I2g4nGZ0Tnt6t0CKGjEZPrHfq82g99djSGJuSVx_wR4ls6J6ed6RNefN8leb2_e1k_0KfnzeP69onagpWZqlY2tkEjKpQCK7SdhKIVjWyFKi2XtjYNB9u0EoWoKsW5sCXv6lYaVRiEYkmupt5DDO8Dpqx3YYh-nNScyxoEAGNjik0pG0NKETt9iG5v4qdmoI9m9GRGj2b00YyWI6N-MdZlk13wORrX_0vyiUzjit9i_Pnpb-gLGCp5vQ
CitedBy_id crossref_primary_10_3390_electronics11050800
crossref_primary_10_1007_s40747_024_01664_0
crossref_primary_10_1109_TCNS_2021_3050032
crossref_primary_10_1109_TSMC_2024_3445109
crossref_primary_10_2139_ssrn_5445934
crossref_primary_10_1109_TRO_2021_3089033
crossref_primary_10_1126_scirobotics_adn7299
crossref_primary_10_1109_LCSYS_2018_2853641
crossref_primary_10_1016_j_arcontrol_2019_04_011
crossref_primary_10_1109_TRO_2024_3415235
crossref_primary_10_1016_j_robot_2019_103384
crossref_primary_10_1109_TCST_2021_3063924
crossref_primary_10_3389_frobt_2020_00054
crossref_primary_10_1007_s43154_021_00046_5
crossref_primary_10_1109_LRA_2021_3080629
crossref_primary_10_1088_3050_2454_adea7a
crossref_primary_10_1016_j_automatica_2023_111264
crossref_primary_10_1038_s42256_020_0213_2
crossref_primary_10_1109_TAC_2024_3422738
crossref_primary_10_1007_s43154_022_00090_9
crossref_primary_10_3389_frobt_2023_1089062
crossref_primary_10_1007_s11768_022_00118_7
crossref_primary_10_1109_TNET_2020_3048126
crossref_primary_10_1109_ACCESS_2018_2872115
crossref_primary_10_1109_TRO_2021_3088054
crossref_primary_10_1109_TAC_2025_3532791
crossref_primary_10_1126_scirobotics_abf1538
crossref_primary_10_1109_TIV_2024_3397872
crossref_primary_10_1109_LCSYS_2025_3588309
crossref_primary_10_1007_s43154_020_00030_5
crossref_primary_10_1080_00207543_2025_2552281
Cites_doi 10.1109/DASC.2013.6719716
10.1023/A:1015256330750
10.1109/IROS.2009.5354455
10.1145/2500423.2500444
10.1109/TAC.2004.834113
10.1145/2619239.2626320
10.1109/SPAWC.2003.1319035
10.1109/IPDPS.2004.1302934
10.1109/TIFS.2009.2026454
10.15607/RSS.2015.XI.020
10.1109/29.17564
10.1109/JPROC.2006.876930
10.1145/2590296.2590321
10.1287/trsc.22.3.161
10.1109/ICIS.2014.6912147
10.1109/TRA.2004.824698
10.1109/SYSTEMS.2009.4815797
10.1109/ROBOT.2009.5152815
10.1109/COMST.2006.315852
10.1109/EUMA.1989.333979
10.1017/CBO9780511807213
10.1109/TSP.2005.861091
10.1007/3-540-45748-8_24
10.1007/978-1-4612-3822-5
10.1109/INFCOM.2007.288
10.1017/CBO9780511841224
10.1109/TWC.2012.012712.101835
10.1109/INFOCOM.2008.239
10.3182/20090924-3-IT-4005.00015
10.1109/TCST.2007.899191
10.1109/CDC.2013.6760152
10.1109/TAC.2010.2092850
10.1109/TPDS.2012.104
10.1109/SAHCN.2011.5984919
10.1145/2534169.2486029
10.1145/2639108.2639142
10.1145/1925861.1925870
10.1109/INFCOM.2013.6567087
10.1109/IPSN.2004.1307346
10.1145/2500423.2500449
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Autonomous Robots is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Autonomous Robots is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-017-9621-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 1400
ExternalDocumentID 10_1007_s10514_017_9621_5
GrantInformation_xml – fundername: U.S. Army Research Laboratory
  grantid: W911NF-08-2-0004
  funderid: http://dx.doi.org/10.13039/100006754
– fundername: National Science Foundation
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-7d5bcbea48e54e8ecf503d4b5d476c25c9ab20cbd5e44887224c62f9d5a73ae03
IEDL.DBID RSV
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404635100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5593
IngestDate Thu Nov 06 14:24:40 EST 2025
Sat Nov 29 02:41:58 EST 2025
Tue Nov 18 21:51:53 EST 2025
Fri Feb 21 02:33:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Anechoic chamber
Wireless networks
Coordinated control
Performance bounds
Cybersecurity
Multi-robot systems
Sybil attack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-7d5bcbea48e54e8ecf503d4b5d476c25c9ab20cbd5e44887224c62f9d5a73ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2259040011
PQPubID 326361
PageCount 18
ParticipantIDs proquest_journals_2259040011
crossref_primary_10_1007_s10514_017_9621_5
crossref_citationtrail_10_1007_s10514_017_9621_5
springer_journals_10_1007_s10514_017_9621_5
PublicationCentury 2000
PublicationDate 20170800
2017-8-00
20170801
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 8
  year: 2017
  text: 20170800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Schwager, M., Julian, B. J., & Rus, D. (2009). Optimal coverage for multiple hovering robots with downward facing cameras. In Robotics and automation, 2009. ICRA ’09. IEEE international conference on (pp. 3515–3522). doi:10.1109/ROBOT.2009.5152815.
WangXYadavVBalakrishnanSCooperative UAV formation flying with obstacle/collision avoidanceIEEE Transactions on Control Systems Technology200715467267910.1109/TCST.2007.899191
MalmircheginiMMostofiYOn the spatial predictability of communication channelsIEEE Transactions on Wireless Communications201211396497810.1109/TWC.2012.012712.101835
Schwager, M., Rus, D., & Slotine, J. J. (2009). Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3), 357–375. http://ijr.sagepub.com/content/28/3/357.abstract.
Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Technical Report.
Higgins, F., Tomlinson, A., & Martin, K.M. (2009). Threats to the swarm: Security considerations for swarm robotics. International Journal on Advances in Security, 2.
Sargeant, I., & Tomlinson, A. (2013). Modelling malicious entities in a robotic swarm. In Digital avionics systems conference (DASC), 2013 IEEE/AIAA 32nd.
Olfati-SaberRMurrayRConsensus problems in networks of agents with switching topology and time-delaysIEEE Transactions on Automatic Control200449915201533208691610.1109/TAC.2004.834113
Kumar, S., Gil, S., Katabi, D., & Rus, D. (2014). Accurate indoor localization with zero start-up cost. In Proceedings of the 20th annual international conference on mobile computing and networking, MobiCom ’14 (pp. 483–494). New York, NY, USA: ACM. doi:10.1145/2639108.2639142.
Yang, Z., Ekici, E., & Xuan, D. (2007). A localization-based anti-sensor network system. In INFOCOM 2007. 26th IEEE international conference on computer communications (pp. 2396–2400). IEEE, doi:10.1109/INFCOM.2007.288. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215870.
BeardRMcLainTNelsonDKingstonDJohansonDDecentralized cooperative aerial surveillance using fixed-wing miniature UAVsProceedings of the IEEE20069471306132410.1109/JPROC.2006.876930
WangYAtteburyGRamamurthyBA survey of security issues in wireless sensor networksCommunications Surveys Tutorials, IEEE20068222310.1109/COMST.2006.315852
YangJChenYTrappeWChengJDetection and localization of multiple spoofing attackers in wireless networksIEEE Transactions on Parallel and Distributed Systems2013241445810.1109/TPDS.2012.104
Newsome, J., Shi, E., Song, D., & Perrig, A. (2004). The sybil attack in sensor networks: Analysis defenses. In Information processing in sensor networks, 2004. IPSN 2004. Third international symposium on (pp. 259–268). doi:10.1109/IPSN.2004.1307346.
Jin, D., & Song, J. (2014). A traffic flow theory aided physical measurement-based sybil nodes detection mechanism in vehicular ad-hoc networks. In Computer and information science (ICIS), 2014 IEEE/ACIS 13th international conference on (pp. 281–286). doi:10.1109/ICIS.2014.6912147. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6912147&tag=1.
StoicaPAryeNMusic, maximum likelihood, and Cramer-Rao boundIEEE Transactions on Acoustics, Speech and Signal Processing198937572074199929610.1109/29.175640672.62102
Feng, Z., Ning, J., Broustis, I., Pelechrinis, K., Krishnamurthy, S.V., & Faloutsos, M. (2011). Coping with packet replay attacks in wireless networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th Annual IEEE Communications Society Conference on (pp. 368–376). IEEE.
HayesMHStatistical digital signal processing and modeling19961New York, NY, USAWiley
GazzahHMarcosSCramer-Rao bounds for antenna array designIEEE Transactions on Signal Processing20065433634510.1109/TSP.2005.861091
Gazzah, H., & Marcos, S. (2003). Directive antenna arrays for 3D source localization. In Signal processing advances in wireless communications, 2003. SPAWC 2003. 4th IEEE Workshop on (pp. 619–623). doi:10.1109/SPAWC.2003.1319035.
Gil, S., Kumar, S., Mazumder, M., Katabi, D., & Rus, D. (2015a). Guaranteeing spoof-resilient multi-robot networks. In Full paper version with supplementary material available as a TECH REPORT at MIT CSAIL Publications and Digital Archive. http://publications.csail.mit.edu.
CortesJMartinezSKaratasTBulloFCoverage control for mobile sensing networksIEEE Transactions on Robotics and Automation200420224325510.1109/TRA.2004.824698
Klausing, H. (1989). Feasibility of a SAR with rotating antennas (ROSAR). In Microwave Conference, 1989.
Gil, S., Kumar, S., Mazumder, M., Katabi, D., & Rus, D. (2015b). Guaranteeing spoof-resilient multi-robot networks. In Proceedings of robotics: Science and systems. Rome, Italy.
XiaoLGreensteinLMandayamNBTrappeWChannel-based detection of sybil attacks in wireless networksIEEE Transactions on Information Forensics and Security20094349250310.1109/TIFS.2009.2026454
Levine, B. N., Shields, C., & Margolin, N. B. (2006). A survey of solutions to the sybil attack. Techincal Report, Document Number 2006-052. Amherst: University of Massachusetts Amherst
Daniel, K., Dusza, B., Lewandowski, A., & Wietfeld, C. (2009). AirShield: A system-of-systems MUAV remote sensing architecture for disaster response. In Systems conference, 2009 3rd Annual IEEE (pp. 196–200) doi:10.1109/SYSTEMS.2009.4815797.
Adib, F., Kumar, S., Aryan, O., Gollakota, S., & Katabi, D. (2013). Interference Alignment by Motion. In MOBICOM.
Miao, F., Pajic, M., & Pappas, G.J. (2013). Stochastic game approach for replay attack detection. In Decision and control (CDC), 2013 IEEE 52nd annual conference on (pp. 1854–1859). IEEE.
Kumar, S., Hamed, E., Katabi, D., & Erran Li, L. (2014). LTE radio analytics made easy and accessible. In Proceedings of the 2014 ACM conference on SIGCOMM, SIGCOMM ’14 (pp. 211–222). New York, NY, USA: ACM. doi:10.1145/2619239.2626320.
TseDVishwanathPFundamentals of wireless communications2005CambridgeCambridge University Press10.1017/CBO9780511807213
LaporteGNobertYTailleferSSolving a family of multi-depot vehicle routing and location-routing problemsTransportation Science198822316117295603510.1287/trsc.22.3.1610662.90039
Sheng, Y., Tan, K., Chen, G., Kotz, D., & Campbell, A. (2008). Detecting 802.11 MAC layer spoofing using received signal strength. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. doi:10.1109/INFOCOM.2008.239. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509834&tag=1.
Lin, L., & Goodrich, M. A. (2009). UAV intelligent path planning for wilderness search and rescue. In Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 709–714). IEEE.
Chapman, A., Nabi-Abdolyousefi, M., & Mesbahi, M. (2009). Identification and infiltration in consensus-type networks. In 1st IFAC Workshop on Estimation and Control of Networked Systems.
Liu, X., Li, A., Yang, X., & Wetherall, D. (2008). Passport: Secure and adoptable source authentication. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08 (pp. 365–378). Berkeley, CA, USA: USENIX Association. http://dl.acm.org/citation.cfm?id=1387589.1387615.
Mathews, C. P., & Zoltowsk, M. D. (1994). Signal Subspace Techniques for Source Localization with Circular Sensor Arrays. Purdue University TechReport. http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1175&context=ecetr
Gil, S., Kumar, S., Katabi, D., & Rus, D. (2013). Adaptive communication in multi-robot systems using directionality of signal strength. ISRR.
Amazon prime air. http://www.amazon.com/b?node=8037720011.
GoldsmithAWireless communications2005CambridgeCambridge University Press10.1017/CBO9780511841224
Wang, T., & Yang, Y. (2013). Analysis on perfect location spoofing attacks using beamforming. In INFOCOM, 2013 Proceedings IEEE (pp. 2778–2786). doi:10.1109/INFCOM.2013.6567087. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6567087.
Douceur, J. (2002). The sybil attack. In P. Druschel, F. Kaashoek, & A. Rowstron (Eds.), Peer-to-Peer systems, Lecture Notes in Computer Science (vol. 2429, pp. 251–260). Berlin: Springer. doi:10.1007/3-540-45748-8_24.
Liu, Y., Bild, D., Dick, R., Mao, Z.M., & Wallach, D. (2014). The Mason test: A defense against Sybil attacks in wireless networks without trusted authorities. CORR, abs/1403.5871. http://dblp.unitrier.de/rec/bib/journals/corr/LiuBDMW14.
ParkerLEDistributed algorithms for multi-robot observation of multiple moving targetsAutonomous Robots20021223125510.1023/A:10152563307501012.68643
Pires W. R., de Paula Figueiredo, T., Wong, H., & Loureiro, A. (2004). Malicious node detection in wireless sensor networks. In Parallel and distributed processing symposium, 2004. Proceedings. 18th international (p. 24). doi:10.1109/IPDPS.2004.1302934.
FitchPJSynthetic aperture radar1988BerlinSpringer10.1007/978-1-4612-3822-5
Wang, J., & Katabi, D. (2013). Dude, Where’s my card?: RFID positioning that works with multipath and non-line of sight. In SIGCOMM.
Liu, H., Wang, Y., Liu, J., Yang, J., & Chen, Y. (2014). Practical user authentication leveraging channel state information (CSI). In Proceedings of the 9th ACM symposium on information, computer and communications security, ASIA CCS ’14 (pp. 389–400). New York, NY, USA: ACM. doi:10.1145/2590296.2590321.
Xiong, J., & Jamieson, K. (2013). SecureArray: Improving Wifi security with fine-grained physical-layer information. In Proceedings of the 19th annual international conference on mobile computing & networking, MobiCom ’13 (pp. 441–452). New York, NY, USA: ACM. doi:10.1145/2500423.2500444.
HalperinDHuWShethAWetherallDTool release: Gathering 802.11n traces with channel state information. ACM SIGCOMMComputer Communication Review20114115310.1145/1925861.1925870
PavoneMFrazzoliEBulloFAdaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environmentIEEE Transactions on Automatic Control201156612591274283922210.1109/TAC.2010.2092850
D Halperin (9621_CR17) 2011; 41
P Stoica (9621_CR42) 1989; 37
A Goldsmith (9621_CR16) 2005
J Yang (9621_CR50) 2013; 24
9621_CR29
9621_CR28
Y Wang (9621_CR47) 2006; 8
9621_CR23
9621_CR22
9621_CR21
9621_CR1
9621_CR20
9621_CR27
9621_CR26
9621_CR25
J Cortes (9621_CR5) 2004; 20
H Gazzah (9621_CR12) 2006; 54
9621_CR51
9621_CR19
M Malmirchegini (9621_CR30) 2012; 11
M Pavone (9621_CR36) 2011; 56
9621_CR11
9621_CR15
9621_CR14
R Olfati-Saber (9621_CR34) 2004; 49
9621_CR13
9621_CR41
9621_CR40
X Wang (9621_CR46) 2007; 15
L Xiao (9621_CR48) 2009; 4
LE Parker (9621_CR35) 2002; 12
9621_CR45
9621_CR44
9621_CR49
9621_CR6
9621_CR7
9621_CR8
MH Hayes (9621_CR18) 1996
9621_CR9
9621_CR2
9621_CR4
G Laporte (9621_CR24) 1988; 22
R Beard (9621_CR3) 2006; 94
9621_CR39
9621_CR33
PJ Fitch (9621_CR10) 1988
9621_CR32
9621_CR31
9621_CR38
9621_CR37
D Tse (9621_CR43) 2005
References_xml – reference: Chapman, A., Nabi-Abdolyousefi, M., & Mesbahi, M. (2009). Identification and infiltration in consensus-type networks. In 1st IFAC Workshop on Estimation and Control of Networked Systems.
– reference: Higgins, F., Tomlinson, A., & Martin, K.M. (2009). Threats to the swarm: Security considerations for swarm robotics. International Journal on Advances in Security, 2.
– reference: ParkerLEDistributed algorithms for multi-robot observation of multiple moving targetsAutonomous Robots20021223125510.1023/A:10152563307501012.68643
– reference: Lin, L., & Goodrich, M. A. (2009). UAV intelligent path planning for wilderness search and rescue. In Intelligent robots and systems, 2009. IROS 2009. IEEE/RSJ International Conference on (pp. 709–714). IEEE.
– reference: Liu, Y., Bild, D., Dick, R., Mao, Z.M., & Wallach, D. (2014). The Mason test: A defense against Sybil attacks in wireless networks without trusted authorities. CORR, abs/1403.5871. http://dblp.unitrier.de/rec/bib/journals/corr/LiuBDMW14.
– reference: StoicaPAryeNMusic, maximum likelihood, and Cramer-Rao boundIEEE Transactions on Acoustics, Speech and Signal Processing198937572074199929610.1109/29.175640672.62102
– reference: Levine, B. N., Shields, C., & Margolin, N. B. (2006). A survey of solutions to the sybil attack. Techincal Report, Document Number 2006-052. Amherst: University of Massachusetts Amherst
– reference: YangJChenYTrappeWChengJDetection and localization of multiple spoofing attackers in wireless networksIEEE Transactions on Parallel and Distributed Systems2013241445810.1109/TPDS.2012.104
– reference: Daniel, K., Dusza, B., Lewandowski, A., & Wietfeld, C. (2009). AirShield: A system-of-systems MUAV remote sensing architecture for disaster response. In Systems conference, 2009 3rd Annual IEEE (pp. 196–200) doi:10.1109/SYSTEMS.2009.4815797.
– reference: Yang, Z., Ekici, E., & Xuan, D. (2007). A localization-based anti-sensor network system. In INFOCOM 2007. 26th IEEE international conference on computer communications (pp. 2396–2400). IEEE, doi:10.1109/INFCOM.2007.288. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215870.
– reference: Feng, Z., Ning, J., Broustis, I., Pelechrinis, K., Krishnamurthy, S.V., & Faloutsos, M. (2011). Coping with packet replay attacks in wireless networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th Annual IEEE Communications Society Conference on (pp. 368–376). IEEE.
– reference: Xiong, J., & Jamieson, K. (2013). SecureArray: Improving Wifi security with fine-grained physical-layer information. In Proceedings of the 19th annual international conference on mobile computing & networking, MobiCom ’13 (pp. 441–452). New York, NY, USA: ACM. doi:10.1145/2500423.2500444.
– reference: LaporteGNobertYTailleferSSolving a family of multi-depot vehicle routing and location-routing problemsTransportation Science198822316117295603510.1287/trsc.22.3.1610662.90039
– reference: MalmircheginiMMostofiYOn the spatial predictability of communication channelsIEEE Transactions on Wireless Communications201211396497810.1109/TWC.2012.012712.101835
– reference: WangXYadavVBalakrishnanSCooperative UAV formation flying with obstacle/collision avoidanceIEEE Transactions on Control Systems Technology200715467267910.1109/TCST.2007.899191
– reference: XiaoLGreensteinLMandayamNBTrappeWChannel-based detection of sybil attacks in wireless networksIEEE Transactions on Information Forensics and Security20094349250310.1109/TIFS.2009.2026454
– reference: Gazzah, H., & Marcos, S. (2003). Directive antenna arrays for 3D source localization. In Signal processing advances in wireless communications, 2003. SPAWC 2003. 4th IEEE Workshop on (pp. 619–623). doi:10.1109/SPAWC.2003.1319035.
– reference: Amazon prime air. http://www.amazon.com/b?node=8037720011.
– reference: Liu, X., Li, A., Yang, X., & Wetherall, D. (2008). Passport: Secure and adoptable source authentication. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08 (pp. 365–378). Berkeley, CA, USA: USENIX Association. http://dl.acm.org/citation.cfm?id=1387589.1387615.
– reference: TseDVishwanathPFundamentals of wireless communications2005CambridgeCambridge University Press10.1017/CBO9780511807213
– reference: Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Technical Report.
– reference: Sargeant, I., & Tomlinson, A. (2013). Modelling malicious entities in a robotic swarm. In Digital avionics systems conference (DASC), 2013 IEEE/AIAA 32nd.
– reference: Newsome, J., Shi, E., Song, D., & Perrig, A. (2004). The sybil attack in sensor networks: Analysis defenses. In Information processing in sensor networks, 2004. IPSN 2004. Third international symposium on (pp. 259–268). doi:10.1109/IPSN.2004.1307346.
– reference: WangYAtteburyGRamamurthyBA survey of security issues in wireless sensor networksCommunications Surveys Tutorials, IEEE20068222310.1109/COMST.2006.315852
– reference: Miao, F., Pajic, M., & Pappas, G.J. (2013). Stochastic game approach for replay attack detection. In Decision and control (CDC), 2013 IEEE 52nd annual conference on (pp. 1854–1859). IEEE.
– reference: Kumar, S., Hamed, E., Katabi, D., & Erran Li, L. (2014). LTE radio analytics made easy and accessible. In Proceedings of the 2014 ACM conference on SIGCOMM, SIGCOMM ’14 (pp. 211–222). New York, NY, USA: ACM. doi:10.1145/2619239.2626320.
– reference: Klausing, H. (1989). Feasibility of a SAR with rotating antennas (ROSAR). In Microwave Conference, 1989.
– reference: Adib, F., Kumar, S., Aryan, O., Gollakota, S., & Katabi, D. (2013). Interference Alignment by Motion. In MOBICOM.
– reference: Kumar, S., Gil, S., Katabi, D., & Rus, D. (2014). Accurate indoor localization with zero start-up cost. In Proceedings of the 20th annual international conference on mobile computing and networking, MobiCom ’14 (pp. 483–494). New York, NY, USA: ACM. doi:10.1145/2639108.2639142.
– reference: Douceur, J. (2002). The sybil attack. In P. Druschel, F. Kaashoek, & A. Rowstron (Eds.), Peer-to-Peer systems, Lecture Notes in Computer Science (vol. 2429, pp. 251–260). Berlin: Springer. doi:10.1007/3-540-45748-8_24.
– reference: PavoneMFrazzoliEBulloFAdaptive and distributed algorithms for vehicle routing in a stochastic and dynamic environmentIEEE Transactions on Automatic Control201156612591274283922210.1109/TAC.2010.2092850
– reference: Wang, J., & Katabi, D. (2013). Dude, Where’s my card?: RFID positioning that works with multipath and non-line of sight. In SIGCOMM.
– reference: Liu, H., Wang, Y., Liu, J., Yang, J., & Chen, Y. (2014). Practical user authentication leveraging channel state information (CSI). In Proceedings of the 9th ACM symposium on information, computer and communications security, ASIA CCS ’14 (pp. 389–400). New York, NY, USA: ACM. doi:10.1145/2590296.2590321.
– reference: Gil, S., Kumar, S., Mazumder, M., Katabi, D., & Rus, D. (2015b). Guaranteeing spoof-resilient multi-robot networks. In Proceedings of robotics: Science and systems. Rome, Italy.
– reference: Schwager, M., Julian, B. J., & Rus, D. (2009). Optimal coverage for multiple hovering robots with downward facing cameras. In Robotics and automation, 2009. ICRA ’09. IEEE international conference on (pp. 3515–3522). doi:10.1109/ROBOT.2009.5152815.
– reference: Sheng, Y., Tan, K., Chen, G., Kotz, D., & Campbell, A. (2008). Detecting 802.11 MAC layer spoofing using received signal strength. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. doi:10.1109/INFOCOM.2008.239. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4509834&tag=1.
– reference: Wang, T., & Yang, Y. (2013). Analysis on perfect location spoofing attacks using beamforming. In INFOCOM, 2013 Proceedings IEEE (pp. 2778–2786). doi:10.1109/INFCOM.2013.6567087. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6567087.
– reference: Pires W. R., de Paula Figueiredo, T., Wong, H., & Loureiro, A. (2004). Malicious node detection in wireless sensor networks. In Parallel and distributed processing symposium, 2004. Proceedings. 18th international (p. 24). doi:10.1109/IPDPS.2004.1302934.
– reference: Mathews, C. P., & Zoltowsk, M. D. (1994). Signal Subspace Techniques for Source Localization with Circular Sensor Arrays. Purdue University TechReport. http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1175&context=ecetr
– reference: FitchPJSynthetic aperture radar1988BerlinSpringer10.1007/978-1-4612-3822-5
– reference: Schwager, M., Rus, D., & Slotine, J. J. (2009). Decentralized, adaptive coverage control for networked robots. The International Journal of Robotics Research, 28(3), 357–375. http://ijr.sagepub.com/content/28/3/357.abstract.
– reference: Gil, S., Kumar, S., Katabi, D., & Rus, D. (2013). Adaptive communication in multi-robot systems using directionality of signal strength. ISRR.
– reference: HayesMHStatistical digital signal processing and modeling19961New York, NY, USAWiley
– reference: GazzahHMarcosSCramer-Rao bounds for antenna array designIEEE Transactions on Signal Processing20065433634510.1109/TSP.2005.861091
– reference: GoldsmithAWireless communications2005CambridgeCambridge University Press10.1017/CBO9780511841224
– reference: Olfati-SaberRMurrayRConsensus problems in networks of agents with switching topology and time-delaysIEEE Transactions on Automatic Control200449915201533208691610.1109/TAC.2004.834113
– reference: Jin, D., & Song, J. (2014). A traffic flow theory aided physical measurement-based sybil nodes detection mechanism in vehicular ad-hoc networks. In Computer and information science (ICIS), 2014 IEEE/ACIS 13th international conference on (pp. 281–286). doi:10.1109/ICIS.2014.6912147. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6912147&tag=1.
– reference: Gil, S., Kumar, S., Mazumder, M., Katabi, D., & Rus, D. (2015a). Guaranteeing spoof-resilient multi-robot networks. In Full paper version with supplementary material available as a TECH REPORT at MIT CSAIL Publications and Digital Archive. http://publications.csail.mit.edu.
– reference: HalperinDHuWShethAWetherallDTool release: Gathering 802.11n traces with channel state information. ACM SIGCOMMComputer Communication Review20114115310.1145/1925861.1925870
– reference: CortesJMartinezSKaratasTBulloFCoverage control for mobile sensing networksIEEE Transactions on Robotics and Automation200420224325510.1109/TRA.2004.824698
– reference: BeardRMcLainTNelsonDKingstonDJohansonDDecentralized cooperative aerial surveillance using fixed-wing miniature UAVsProceedings of the IEEE20069471306132410.1109/JPROC.2006.876930
– ident: 9621_CR38
  doi: 10.1109/DASC.2013.6719716
– volume: 12
  start-page: 231
  year: 2002
  ident: 9621_CR35
  publication-title: Autonomous Robots
  doi: 10.1023/A:1015256330750
– ident: 9621_CR26
  doi: 10.1109/IROS.2009.5354455
– ident: 9621_CR49
  doi: 10.1145/2500423.2500444
– volume: 49
  start-page: 1520
  issue: 9
  year: 2004
  ident: 9621_CR34
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2004.834113
– ident: 9621_CR23
  doi: 10.1145/2619239.2626320
– ident: 9621_CR11
  doi: 10.1109/SPAWC.2003.1319035
– ident: 9621_CR37
  doi: 10.1109/IPDPS.2004.1302934
– volume: 4
  start-page: 492
  issue: 3
  year: 2009
  ident: 9621_CR48
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2009.2026454
– ident: 9621_CR14
  doi: 10.15607/RSS.2015.XI.020
– volume: 37
  start-page: 720
  issue: 5
  year: 1989
  ident: 9621_CR42
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/29.17564
– volume: 94
  start-page: 1306
  issue: 7
  year: 2006
  ident: 9621_CR3
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2006.876930
– ident: 9621_CR27
  doi: 10.1145/2590296.2590321
– volume: 22
  start-page: 161
  issue: 3
  year: 1988
  ident: 9621_CR24
  publication-title: Transportation Science
  doi: 10.1287/trsc.22.3.161
– ident: 9621_CR13
– ident: 9621_CR20
  doi: 10.1109/ICIS.2014.6912147
– volume: 20
  start-page: 243
  issue: 2
  year: 2004
  ident: 9621_CR5
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/TRA.2004.824698
– ident: 9621_CR6
  doi: 10.1109/SYSTEMS.2009.4815797
– ident: 9621_CR40
– ident: 9621_CR39
  doi: 10.1109/ROBOT.2009.5152815
– volume: 8
  start-page: 2
  issue: 2
  year: 2006
  ident: 9621_CR47
  publication-title: Communications Surveys Tutorials, IEEE
  doi: 10.1109/COMST.2006.315852
– ident: 9621_CR21
  doi: 10.1109/EUMA.1989.333979
– ident: 9621_CR31
– volume-title: Fundamentals of wireless communications
  year: 2005
  ident: 9621_CR43
  doi: 10.1017/CBO9780511807213
– ident: 9621_CR1
– volume-title: Statistical digital signal processing and modeling
  year: 1996
  ident: 9621_CR18
– ident: 9621_CR29
– volume: 54
  start-page: 336
  year: 2006
  ident: 9621_CR12
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2005.861091
– ident: 9621_CR7
  doi: 10.1007/3-540-45748-8_24
– volume-title: Synthetic aperture radar
  year: 1988
  ident: 9621_CR10
  doi: 10.1007/978-1-4612-3822-5
– ident: 9621_CR51
  doi: 10.1109/INFCOM.2007.288
– volume-title: Wireless communications
  year: 2005
  ident: 9621_CR16
  doi: 10.1017/CBO9780511841224
– ident: 9621_CR19
– volume: 11
  start-page: 964
  issue: 3
  year: 2012
  ident: 9621_CR30
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2012.012712.101835
– ident: 9621_CR41
  doi: 10.1109/INFOCOM.2008.239
– ident: 9621_CR4
  doi: 10.3182/20090924-3-IT-4005.00015
– volume: 15
  start-page: 672
  issue: 4
  year: 2007
  ident: 9621_CR46
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2007.899191
– ident: 9621_CR32
  doi: 10.1109/CDC.2013.6760152
– ident: 9621_CR28
– volume: 56
  start-page: 1259
  issue: 6
  year: 2011
  ident: 9621_CR36
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2092850
– volume: 24
  start-page: 44
  issue: 1
  year: 2013
  ident: 9621_CR50
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2012.104
– ident: 9621_CR9
  doi: 10.1109/SAHCN.2011.5984919
– ident: 9621_CR44
  doi: 10.1145/2534169.2486029
– ident: 9621_CR22
  doi: 10.1145/2639108.2639142
– ident: 9621_CR8
– volume: 41
  start-page: 53
  issue: 1
  year: 2011
  ident: 9621_CR17
  publication-title: Computer Communication Review
  doi: 10.1145/1925861.1925870
– ident: 9621_CR15
  doi: 10.15607/RSS.2015.XI.020
– ident: 9621_CR45
  doi: 10.1109/INFCOM.2013.6567087
– ident: 9621_CR33
  doi: 10.1109/IPSN.2004.1307346
– ident: 9621_CR25
– ident: 9621_CR2
  doi: 10.1145/2500423.2500449
SSID ssj0009700
Score 2.5016823
Snippet Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1383
SubjectTerms Algorithms
Artificial Intelligence
Clients
Computer Imaging
Control
Cryptography
Cybersecurity
Engineering
Mechatronics
Multiple robots
Pattern Recognition and Graphics
Robotics
Robotics and Automation
Robots
Special Issue on "Robotics: Science and Systems"
Vision
Wireless communications
Wireless networks
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-LqKj14UoJpm6TJSURcPMgiqLC30jwKC9Ku2-rvN2lTq4J78VjahvJlOo_MzDcA54IwFckwRiSTDBGGYyRxzhE2BGuFWS5MwzP7kEwmfDoVj_7ArfJllZ1ObBS1LpU7I7-yciecwIXh9fwNualRLrvqR2iswppjSQib0r2nnnTXt6BYFwBZzznusppt65x1FZDT0YJFIaI_7VLvbP7KjzZmZ7z93w_egS3vcAY3rYTswoop9mDzGw3hPoROThzCxl4GNs4tc2Sj8Nmr65UMmpJDtChlWQdFWzReHcDL-O759h75UQpIxSGrUaKpVNJkhBtKDDcqpzjWRFJNErtZVIlMRlhJTY2N13hiDbtiUS40zZI4Mzg-hEFRFuYIAp4ZLqyVx5G2waGSQlGdZ0wJZZ0BptkQcAdkqjzPuBt38Zr2DMkO-9RinzrsUzqEi69X5i3JxrKHRx3eqf_fqrQHewiX3Y71t_9c7Hj5YiewETkRaQr-RjCoF-_mFNbVRz2rFmeNsH0CQyjZAw
  priority: 102
  providerName: ProQuest
Title Guaranteeing spoof-resilient multi-robot networks
URI https://link.springer.com/article/10.1007/s10514-017-9621-5
https://www.proquest.com/docview/2259040011
Volume 41
WOSCitedRecordID wos000404635100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7527
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009700
  issn: 0929-5593
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB609aAH32K1lhw8KQubZHeze1SpeJBSWpXiJWQfgUJJpI3-fnfTxFRRQS-BkM0SZibzzTAz3wKcC8JUIP0QkUQyRBgOkcQpR9gQrBVmqTAlz-x9NBjwyUQMqznuRd3tXpckS0-9MuxmwR05rypY4CO6Dm2Ldtyd1zAaPzVMu9XcicV9ZMPlsC5lfrfFZzBqIswvRdESa253_vWVu7BdhZbe1dIW9mDNZPuwtUI4eAC-swgnS2NvPZvR5imy-fZ05qYivbK5EM1zmRdetmwPXxzC423_4eYOVYcmIBX6rECRplJJkxBuKDHcqJTiUBNJNYmsWqgSiQywkpoam5nxyEK4YkEqNE2iMDE4PIJWlmfmGDyeGC4snuNA2zRQSaGoThOmhLKwzzTrAK6lF6uKUdwdbDGLGy5kJ43YSiN20ohpBy4-XnlZ0mn8trhbqySu_qxFbP2PcI7H9ztwWaugefzjZid_Wn0Km4HTYdnp14VWMX81Z7Ch3orpYt6D9nV_MBz1XKPo2F6H9LlXGuE7sRLSKA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS-RAFH64gTMH1xls1xz0ohRWKqlK6iAiLii2jaCCt5haAg3ScTrtDPOn_I2-ymJU0JsHjyFJUeT7qt73Um8B2JSh0Ez5AQlTJUgoaEAUzWJCbUiNpiKTtqwz2416vfj2Vl6OwVOTC-PCKps9sdyoTa7dP_Jd5J10hPP9_Yc_xHWNcqerTQuNihbn9v8_dNmKvbMjxHeLsZPj68NTUncVIDrwxYhEhiutbBrGloc2tjrjNDCh4iaMcN5cy1QxqpXhFl2XOEIbpwXLpOFpFKSWBjjuOEyijGCyDBW8aov81ikvKDkIKvWgOUWtUvVQmhBnE6RgPuFv7WArbt-dx5Zm7mT2u32gOZipBbV3UK2AeRizgwX4-arM4iL4bh04Blm89NCPzzMytEX_3uWCemVIJRnmKh95gyoovvgFN18y598wMcgHdgm8OLWxRBVDmUHnVyupuclSoaVGsSOM6ABtgEt0XUfdtfO4T9oK0A7rBLFOHNYJ78D2yysPVRGRzx5ebfBN6v2kSFpwO7DTMKS9_eFgy58PtgHTp9cX3aR71jtfgR_M0bMMblyFidHw0a7BlP476hfD9ZLoHtx9NXGeAfPbN_U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64IXpwF8e1B70oYdIlaXMQEXVQlGEOCuKlNktBkKlOR8W_5q_zpYtVQW8ePJa2oe33Je97zVsAtkXAlSddnwSJ5CTg1CeSphGhJqBaUZ4KU9SZvQi73ej6WvRG4K3OhbFhlfWaWCzUOlP2H3kbeScs4Vy3nVZhEb3jzsHDI7EdpOxOa91Oo6TIuXl9Qfct3z87Rqx3PK9zcnl0SqoOA0T5Lh-SUDOppEmCyLDAREaljPo6kEwHIb4DUyKRHlVSM4NuTBSivVPcS4VmSegnhvo47iiMh-hj2nDCHrtpCv5W6S8oPwiqdr_eUS3T9lCmEGsfBPdcwr7axEboftubLUxeZ_Y_f6w5mKmEtnNYzox5GDH9BZj-VH5xEVw7PyyzDB466N9nKRmY_O7e5og6RaglGWQyGzr9Mlg-X4KrP3nmZRjrZ32zAk6UmEiguqGeRqdYSaGYThOuhEIRxDVvAa1BjFVVX922-biPm8rQFvcYcY8t7jFrwe7HLQ9lcZHfLl6vsY6rdSaPG6BbsFezpTn942Crvw-2BZPIl_jirHu-BlOeZWoR87gOY8PBk9mACfU8vMsHmwXnHbj9a968A6k8QM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guaranteeing+spoof-resilient+multi-robot+networks&rft.jtitle=Autonomous+robots&rft.au=Gil%2C+Stephanie&rft.au=Kumar%2C+Swarun&rft.au=Mazumder%2C+Mark&rft.au=Katabi%2C+Dina&rft.date=2017-08-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=41&rft.issue=6&rft.spage=1383&rft.epage=1400&rft_id=info:doi/10.1007%2Fs10514-017-9621-5&rft.externalDocID=10_1007_s10514_017_9621_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon