A Hamiltonian formulation of causal variational principles
Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a cl...
Saved in:
| Published in: | Calculus of variations and partial differential equations Vol. 56; no. 3; pp. 1 - 33 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2017
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0944-2669, 1432-0835 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on
R
1
,
1
×
S
1
where a local minimizer is given by a measure supported on a two-dimensional lattice. |
|---|---|
| AbstractList | Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on R1,1×S1 where a local minimizer is given by a measure supported on a two-dimensional lattice. Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on R 1 , 1 × S 1 where a local minimizer is given by a measure supported on a two-dimensional lattice. |
| ArticleNumber | 73 |
| Author | Kleiner, Johannes Finster, Felix |
| Author_xml | – sequence: 1 givenname: Felix surname: Finster fullname: Finster, Felix email: finster@ur.de organization: Fakultät für Mathematik, Universität Regensburg – sequence: 2 givenname: Johannes surname: Kleiner fullname: Kleiner, Johannes organization: Fakultät für Mathematik, Universität Regensburg |
| BookMark | eNp9kE1LAzEQhoNUsFZ_gLcFz9GZfGy63kpRKxS86Dmk2URStpua7Ar-e7ddQRD0NMMwz_DOc04mbWwdIVcINwigbjOAZCUFVBRRcipPyBQFZxTmXE7IFCohKCvL6oyc57wFQDlnYkruFsXK7ELTxTaYtvAx7frGdCG2RfSFNX02TfFhUjjOhn6fQmvDvnH5gpx602R3-V1n5PXh_mW5ouvnx6flYk0tx7Kjytrazj1IX1shfF1bx8EbUTLOuWFonKgZY8opiRsvvbBSAvMWraoUbGo-I9fj3X2K773Lnd7GPg1ZsmZQ8hIrVYlhC8ctm2LOyXk9JN2Z9KkR9EGRHhXpQZE-KNJyYNQvxobu-GiXTGj-JdlI5oOPN5d-Mv0NfQHOMXzF |
| CitedBy_id | crossref_primary_10_1002_prop_202400055 crossref_primary_10_1016_j_jde_2021_05_025 crossref_primary_10_1007_s00023_021_01116_2 crossref_primary_10_1515_acv_2020_0014 crossref_primary_10_1007_s00526_018_1469_9 crossref_primary_10_1007_s10455_021_09775_4 crossref_primary_10_1007_s00526_022_02233_4 crossref_primary_10_1007_s00526_022_02237_0 crossref_primary_10_1088_1361_6382_ac7a86 crossref_primary_10_1007_s11005_022_01534_1 crossref_primary_10_1515_acv_2021_0006 crossref_primary_10_1007_s11040_025_09505_3 |
| Cites_doi | 10.1017/CBO9780511526411 10.1007/978-3-0348-0043-3_9 10.1515/acv-2012-0109 10.4310/ATMP.2012.v16.n4.a3 10.1088/1742-6596/626/1/012020 10.1007/978-3-540-34514-5 10.1007/s00205-013-0649-1 10.1007/978-3-319-42067-7 10.1090/surv/083 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00526-017-1153-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1432-0835 |
| EndPage | 33 |
| ExternalDocumentID | 10_1007_s00526_017_1153_5 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7Z Z88 Z8T Z92 ZMTXR ZWQNP ~EX 88I 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ABUWG ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c316t-7ccdc8f05fdc44fddce30fa462333a21ae4d2227e751bf5f4c5502fc1c7970bd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402817100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0944-2669 |
| IngestDate | Thu Sep 18 00:00:28 EDT 2025 Sat Nov 29 06:45:34 EST 2025 Tue Nov 18 22:41:04 EST 2025 Fri Feb 21 02:35:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 53D30 49K21 49S05 28C99 83C47 58C35 58Z05 49K27 49Q20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-7ccdc8f05fdc44fddce30fa462333a21ae4d2227e751bf5f4c5502fc1c7970bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2063619794 |
| PQPubID | 32028 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2063619794 crossref_primary_10_1007_s00526_017_1153_5 crossref_citationtrail_10_1007_s00526_017_1153_5 springer_journals_10_1007_s00526_017_1153_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Calculus of variations and partial differential equations |
| PublicationTitleAbbrev | Calc. Var |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Finster (CR5) 2010; 646 CR4 CR3 Finster, Kleiner (CR10) 2015; 626 CR6 CR9 CR15 Bernard, Finster (CR1) 2014; 7 CR13 Bogachev (CR2) 2007 Finster, Grotz (CR7) 2012; 16 Halmos (CR14) 1974 Saunders (CR17) 1989 Finster, Grotz, Schiefeneder, Finster, Müller, Nardmann, Tolksdorf, Zeidler (CR8) 2012 Finster, Kleiner (CR11) 2016; 55:35 Finster, Schiefeneder (CR12) 2013; 210 Rudin (CR16) 1987 F Finster (1153_CR5) 2010; 646 DJ Saunders (1153_CR17) 1989 1153_CR15 F Finster (1153_CR12) 2013; 210 1153_CR13 1153_CR6 F Finster (1153_CR11) 2016; 55:35 PR Halmos (1153_CR14) 1974 1153_CR4 W Rudin (1153_CR16) 1987 1153_CR3 VI Bogachev (1153_CR2) 2007 F Finster (1153_CR7) 2012; 16 Y Bernard (1153_CR1) 2014; 7 F Finster (1153_CR8) 2012 F Finster (1153_CR10) 2015; 626 1153_CR9 |
| References_xml | – year: 1989 ident: CR17 publication-title: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series doi: 10.1017/CBO9780511526411 – start-page: 157 year: 2012 end-page: 182 ident: CR8 article-title: Causal fermion systems: a quantum space-time emerging from an action principle publication-title: Quantum Field Theory and Gravity doi: 10.1007/978-3-0348-0043-3_9 – year: 1974 ident: CR14 publication-title: Measure Theory – ident: CR3 – ident: CR4 – ident: CR15 – year: 1987 ident: CR16 publication-title: Real and Complex Analysis – ident: CR13 – ident: CR9 – volume: 55:35 start-page: 41 issue: 2 year: 2016 ident: CR11 article-title: Noether-like theorems for causal variational principles publication-title: Calc. Var. Partial Differ. Equ. – ident: CR6 – volume: 646 start-page: 141 year: 2010 end-page: 194 ident: CR5 article-title: Causal variational principles on measure spaces publication-title: J. Reine Angew. Math. – volume: 7 start-page: 27 issue: 1 year: 2014 end-page: 57 ident: CR1 article-title: On the structure of minimizers of causal variational principles in the non-compact and equivariant settings publication-title: Adv. Calc. Var doi: 10.1515/acv-2012-0109 – volume: 16 start-page: 1197 issue: 4 year: 2012 end-page: 1290 ident: CR7 article-title: A Lorentzian quantum geometry publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2012.v16.n4.a3 – volume: 626 start-page: 012020 year: 2015 ident: CR10 article-title: Causal fermion systems as a candidate for a unified physical theory publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/626/1/012020 – year: 2007 ident: CR2 publication-title: Measure Theory doi: 10.1007/978-3-540-34514-5 – volume: 210 start-page: 321 issue: 2 year: 2013 end-page: 364 ident: CR12 article-title: On the support of minimizers of causal variational principles publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-013-0649-1 – volume: 7 start-page: 27 issue: 1 year: 2014 ident: 1153_CR1 publication-title: Adv. Calc. Var doi: 10.1515/acv-2012-0109 – volume-title: Measure Theory year: 2007 ident: 1153_CR2 doi: 10.1007/978-3-540-34514-5 – volume-title: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series year: 1989 ident: 1153_CR17 doi: 10.1017/CBO9780511526411 – volume: 210 start-page: 321 issue: 2 year: 2013 ident: 1153_CR12 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-013-0649-1 – volume-title: Measure Theory year: 1974 ident: 1153_CR14 – ident: 1153_CR6 doi: 10.1007/978-3-319-42067-7 – volume: 626 start-page: 012020 year: 2015 ident: 1153_CR10 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/626/1/012020 – ident: 1153_CR13 – volume-title: Real and Complex Analysis year: 1987 ident: 1153_CR16 – volume: 55:35 start-page: 41 issue: 2 year: 2016 ident: 1153_CR11 publication-title: Calc. Var. Partial Differ. Equ. – ident: 1153_CR3 – ident: 1153_CR9 – ident: 1153_CR4 – start-page: 157 volume-title: Quantum Field Theory and Gravity year: 2012 ident: 1153_CR8 doi: 10.1007/978-3-0348-0043-3_9 – ident: 1153_CR15 doi: 10.1090/surv/083 – volume: 646 start-page: 141 year: 2010 ident: 1153_CR5 publication-title: J. Reine Angew. Math. – volume: 16 start-page: 1197 issue: 4 year: 2012 ident: 1153_CR7 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2012.v16.n4.a3 |
| SSID | ssj0015824 |
| Score | 2.3911123 |
| Snippet | Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Analysis Calculus of Variations and Optimal Control; Optimization Construction Control Euler-Lagrange equation Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Smoothness Surface layers Systems Theory Theoretical Variational principles |
| Title | A Hamiltonian formulation of causal variational principles |
| URI | https://link.springer.com/article/10.1007/s00526-017-1153-5 https://www.proquest.com/docview/2063619794 |
| Volume | 56 |
| WOSCitedRecordID | wos000402817100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link customDbUrl: eissn: 1432-0835 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015824 issn: 0944-2669 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8NADA86fdAHv4fTKX3wSTlo72O9822IYw86xC_2VtprDwTZxrrt7zd363UoKuhzr6EkafJLckkALlJJtTQqJ5pjpMMjWhCVhZLY60I07dh7h07Sd_FgIIdD9VD1cZf-trsvSTpLXTe7udEkxFpVRDGMiHXYQG8n7b6Gx6fXunQgpNtki2ELJ-h9lC9lfkfiszNaIcwvRVHna3q7__rKPdipoGXQXerCPqwVowPYvq_nspaHcN0N-jajgYAP1SKwgLVa3xWMTaDTeYkEFhg-VynCYOJz8eURvPRun2_6pNqeQDSLOjMSa52jGEJhcs25yZHrLDQpR7zDWEqjtOC5bYQtYhFlRhiuMVihRkc6VnGY5awJjdF4VBxDkAujpNRpFhYROjM75U7Y0JKGscqY5i0IPRsTXY0Wtxsu3pN6KLJjS4JsSSxbEtGCy_qVyXKuxm-H2142SfWLlQlFcIXRH9qTFlx5Wawe_0js5E-nT2GLWmG6vEsbGrPpvDiDTb2YvZXTc6d5Hz0i0W0 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1Dz4pATaNFlb34Y4Jm5DdMreQps2IMg21m5_v5es7VBU0Oemodyld9_d5b4DuIwCpgIdJlRxjHS4y1Iaxk5AzXUhFjXNvUOr6a7f7wfDYfhY9HFn5W33siRpLXXV7GapSaixqohiPCpWYY2jwzKE-U_Pr1XpQAR2ki2GLZyi9wnLUuZ3W3x2RkuE-aUoan1Ne-dfX7kL2wW0JK3FWdiDlXS0D1u9ipc1O4CbFumYjAYCPjwWxADWYnwXGWuiolmGG8wxfC5ShGRS5uKzQ3hp3w1uO7SYnkCV5zZz6iuVoBocoRPFuU5Q6p6jI454x_Mi5kYpT0wjbOoLN9ZCc4XBCtPKVX7oO3HiHUFtNB6lx0ASocMgUFHspC46M8NyJ0xoyRw_jD3F6-CUYpSqoBY3Ey7eZUWKbMUiUSzSiEWKOlxVr0wWvBq_LW6UupHFL5ZJhuAKoz-0J3W4LnWxfPzjZid_Wn0BG51Bryu79_2HU9hkRrE2B9OAWj6dpWewrub5WzY9t6fwAxeh1FE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah98UsLaNFlb34Y6Js4x8IO9hTZpYCDdWLv9_V66tkNRQXxuGsrdNfe7j_wO4DL0qfR1oIhkGOkwh8YkiGyfmHYhGrZM32Gu6Z7X7_vDYTAo5pymZbd7WZJc3GkwLE1J1pwo3awuvuU0JcScsIhoXMJXYY2ZPnoTrj-_VWUE7udTbTGEYQQ9UVCWNb_b4rNjWqLNLwXS3O90dv79xbuwXUBOq72wkT1YiZN92Hqq-FrTA7hpW12T6UAgiOZiGSBbjPWyxtqS4SzFDeYYVhepQ2tS5ujTQ3jt3L_cdkkxVYFI12llxJNSoXpsrpVkTCvUhmvrkCEOct2QOmHMlLkgG3vciTTXTGIQQ7V0pBd4dqTcI6gl4yQ-BktxHfi-DCM7dtDJGfY7bkJOantB5EpWB7sUqZAF5biZfPEuKrLkXCwCxSKMWASvw1X1ymTBt_Hb4kapJ1H8eqmgCLowKsRzpg7XpV6Wj3_c7ORPqy9gY3DXEb2H_uMpbFKj1zw104BaNp3FZ7Au59konZ7nBvkBYO3dNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hamiltonian+formulation+of+causal+variational+principles&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Finster%2C+Felix&rft.au=Kleiner%2C+Johannes&rft.date=2017-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=56&rft.issue=3&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1007%2Fs00526-017-1153-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |