A Hamiltonian formulation of causal variational principles

Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a cl...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations Vol. 56; no. 3; pp. 1 - 33
Main Authors: Finster, Felix, Kleiner, Johannes
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2017
Springer Nature B.V
Subjects:
ISSN:0944-2669, 1432-0835
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on R 1 , 1 × S 1 where a local minimizer is given by a measure supported on a two-dimensional lattice.
AbstractList Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on R1,1×S1 where a local minimizer is given by a measure supported on a two-dimensional lattice.
Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian structure, giving a formulation of the dynamics in terms of physical fields in space-time. After generalizing causal variational principles to a class of lower semi-continuous Lagrangians on a smooth, possibly non-compact manifold, the corresponding Euler–Lagrange equations are derived. In the first part, it is shown under additional smoothness assumptions that the space of solutions of the Euler–Lagrange equations has the structure of a symplectic Fréchet manifold. The symplectic form is constructed as a surface layer integral which is shown to be invariant under the time evolution. In the second part, the results and methods are extended to the non-smooth setting. The physical fields correspond to variations of the universal measure described infinitesimally by one-jets. Evaluating the Euler–Lagrange equations weakly, we derive linearized field equations for these jets. In the final part, our constructions and results are illustrated in a detailed example on R 1 , 1 × S 1 where a local minimizer is given by a measure supported on a two-dimensional lattice.
ArticleNumber 73
Author Kleiner, Johannes
Finster, Felix
Author_xml – sequence: 1
  givenname: Felix
  surname: Finster
  fullname: Finster, Felix
  email: finster@ur.de
  organization: Fakultät für Mathematik, Universität Regensburg
– sequence: 2
  givenname: Johannes
  surname: Kleiner
  fullname: Kleiner, Johannes
  organization: Fakultät für Mathematik, Universität Regensburg
BookMark eNp9kE1LAzEQhoNUsFZ_gLcFz9GZfGy63kpRKxS86Dmk2URStpua7Ar-e7ddQRD0NMMwz_DOc04mbWwdIVcINwigbjOAZCUFVBRRcipPyBQFZxTmXE7IFCohKCvL6oyc57wFQDlnYkruFsXK7ELTxTaYtvAx7frGdCG2RfSFNX02TfFhUjjOhn6fQmvDvnH5gpx602R3-V1n5PXh_mW5ouvnx6flYk0tx7Kjytrazj1IX1shfF1bx8EbUTLOuWFonKgZY8opiRsvvbBSAvMWraoUbGo-I9fj3X2K773Lnd7GPg1ZsmZQ8hIrVYlhC8ctm2LOyXk9JN2Z9KkR9EGRHhXpQZE-KNJyYNQvxobu-GiXTGj-JdlI5oOPN5d-Mv0NfQHOMXzF
CitedBy_id crossref_primary_10_1002_prop_202400055
crossref_primary_10_1016_j_jde_2021_05_025
crossref_primary_10_1007_s00023_021_01116_2
crossref_primary_10_1515_acv_2020_0014
crossref_primary_10_1007_s00526_018_1469_9
crossref_primary_10_1007_s10455_021_09775_4
crossref_primary_10_1007_s00526_022_02233_4
crossref_primary_10_1007_s00526_022_02237_0
crossref_primary_10_1088_1361_6382_ac7a86
crossref_primary_10_1007_s11005_022_01534_1
crossref_primary_10_1515_acv_2021_0006
crossref_primary_10_1007_s11040_025_09505_3
Cites_doi 10.1017/CBO9780511526411
10.1007/978-3-0348-0043-3_9
10.1515/acv-2012-0109
10.4310/ATMP.2012.v16.n4.a3
10.1088/1742-6596/626/1/012020
10.1007/978-3-540-34514-5
10.1007/s00205-013-0649-1
10.1007/978-3-319-42067-7
10.1090/surv/083
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00526-017-1153-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
EndPage 33
ExternalDocumentID 10_1007_s00526_017_1153_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-7ccdc8f05fdc44fddce30fa462333a21ae4d2227e751bf5f4c5502fc1c7970bd3
IEDL.DBID RSV
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402817100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0944-2669
IngestDate Thu Sep 18 00:00:28 EDT 2025
Sat Nov 29 06:45:34 EST 2025
Tue Nov 18 22:41:04 EST 2025
Fri Feb 21 02:35:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 53D30
49K21
49S05
28C99
83C47
58C35
58Z05
49K27
49Q20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-7ccdc8f05fdc44fddce30fa462333a21ae4d2227e751bf5f4c5502fc1c7970bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2063619794
PQPubID 32028
PageCount 33
ParticipantIDs proquest_journals_2063619794
crossref_primary_10_1007_s00526_017_1153_5
crossref_citationtrail_10_1007_s00526_017_1153_5
springer_journals_10_1007_s00526_017_1153_5
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Finster (CR5) 2010; 646
CR4
CR3
Finster, Kleiner (CR10) 2015; 626
CR6
CR9
CR15
Bernard, Finster (CR1) 2014; 7
CR13
Bogachev (CR2) 2007
Finster, Grotz (CR7) 2012; 16
Halmos (CR14) 1974
Saunders (CR17) 1989
Finster, Grotz, Schiefeneder, Finster, Müller, Nardmann, Tolksdorf, Zeidler (CR8) 2012
Finster, Kleiner (CR11) 2016; 55:35
Finster, Schiefeneder (CR12) 2013; 210
Rudin (CR16) 1987
F Finster (1153_CR5) 2010; 646
DJ Saunders (1153_CR17) 1989
1153_CR15
F Finster (1153_CR12) 2013; 210
1153_CR13
1153_CR6
F Finster (1153_CR11) 2016; 55:35
PR Halmos (1153_CR14) 1974
1153_CR4
W Rudin (1153_CR16) 1987
1153_CR3
VI Bogachev (1153_CR2) 2007
F Finster (1153_CR7) 2012; 16
Y Bernard (1153_CR1) 2014; 7
F Finster (1153_CR8) 2012
F Finster (1153_CR10) 2015; 626
1153_CR9
References_xml – year: 1989
  ident: CR17
  publication-title: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series
  doi: 10.1017/CBO9780511526411
– start-page: 157
  year: 2012
  end-page: 182
  ident: CR8
  article-title: Causal fermion systems: a quantum space-time emerging from an action principle
  publication-title: Quantum Field Theory and Gravity
  doi: 10.1007/978-3-0348-0043-3_9
– year: 1974
  ident: CR14
  publication-title: Measure Theory
– ident: CR3
– ident: CR4
– ident: CR15
– year: 1987
  ident: CR16
  publication-title: Real and Complex Analysis
– ident: CR13
– ident: CR9
– volume: 55:35
  start-page: 41
  issue: 2
  year: 2016
  ident: CR11
  article-title: Noether-like theorems for causal variational principles
  publication-title: Calc. Var. Partial Differ. Equ.
– ident: CR6
– volume: 646
  start-page: 141
  year: 2010
  end-page: 194
  ident: CR5
  article-title: Causal variational principles on measure spaces
  publication-title: J. Reine Angew. Math.
– volume: 7
  start-page: 27
  issue: 1
  year: 2014
  end-page: 57
  ident: CR1
  article-title: On the structure of minimizers of causal variational principles in the non-compact and equivariant settings
  publication-title: Adv. Calc. Var
  doi: 10.1515/acv-2012-0109
– volume: 16
  start-page: 1197
  issue: 4
  year: 2012
  end-page: 1290
  ident: CR7
  article-title: A Lorentzian quantum geometry
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2012.v16.n4.a3
– volume: 626
  start-page: 012020
  year: 2015
  ident: CR10
  article-title: Causal fermion systems as a candidate for a unified physical theory
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/626/1/012020
– year: 2007
  ident: CR2
  publication-title: Measure Theory
  doi: 10.1007/978-3-540-34514-5
– volume: 210
  start-page: 321
  issue: 2
  year: 2013
  end-page: 364
  ident: CR12
  article-title: On the support of minimizers of causal variational principles
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-013-0649-1
– volume: 7
  start-page: 27
  issue: 1
  year: 2014
  ident: 1153_CR1
  publication-title: Adv. Calc. Var
  doi: 10.1515/acv-2012-0109
– volume-title: Measure Theory
  year: 2007
  ident: 1153_CR2
  doi: 10.1007/978-3-540-34514-5
– volume-title: The Geometry of Jet Bundles, London Mathematical Society Lecture Note Series
  year: 1989
  ident: 1153_CR17
  doi: 10.1017/CBO9780511526411
– volume: 210
  start-page: 321
  issue: 2
  year: 2013
  ident: 1153_CR12
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-013-0649-1
– volume-title: Measure Theory
  year: 1974
  ident: 1153_CR14
– ident: 1153_CR6
  doi: 10.1007/978-3-319-42067-7
– volume: 626
  start-page: 012020
  year: 2015
  ident: 1153_CR10
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/626/1/012020
– ident: 1153_CR13
– volume-title: Real and Complex Analysis
  year: 1987
  ident: 1153_CR16
– volume: 55:35
  start-page: 41
  issue: 2
  year: 2016
  ident: 1153_CR11
  publication-title: Calc. Var. Partial Differ. Equ.
– ident: 1153_CR3
– ident: 1153_CR9
– ident: 1153_CR4
– start-page: 157
  volume-title: Quantum Field Theory and Gravity
  year: 2012
  ident: 1153_CR8
  doi: 10.1007/978-3-0348-0043-3_9
– ident: 1153_CR15
  doi: 10.1090/surv/083
– volume: 646
  start-page: 141
  year: 2010
  ident: 1153_CR5
  publication-title: J. Reine Angew. Math.
– volume: 16
  start-page: 1197
  issue: 4
  year: 2012
  ident: 1153_CR7
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2012.v16.n4.a3
SSID ssj0015824
Score 2.3911123
Snippet Causal variational principles, which are the analytic core of the physical theory of causal fermion systems, are found to have an underlying Hamiltonian...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Calculus of Variations and Optimal Control; Optimization
Construction
Control
Euler-Lagrange equation
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Smoothness
Surface layers
Systems Theory
Theoretical
Variational principles
Title A Hamiltonian formulation of causal variational principles
URI https://link.springer.com/article/10.1007/s00526-017-1153-5
https://www.proquest.com/docview/2063619794
Volume 56
WOSCitedRecordID wos000402817100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0835
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015824
  issn: 0944-2669
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoB44gSL1kS4dtwkx7QAT4jHtVjVOIiGhbVq7_X6crO0EAiQ4N7EqO8332a5tgMtMGMI5IxjGPGSE15JJY3wmMbP9wGTbdxXew3sxGCSjUeexrOPOq7_dq5Sku6nrYjfXmoTZW5VYTMTiddggtEvsvIan52GdOogTN8mW3BbOCH06VSrzOxGfwWjFML8kRR3W9Hb_9ZZ7sFNSS6-7PAv7sKbHB7D9UPdlzQ_hpuv1bUSDCB8dC88S1nJ8lzcxHmbznAQsyH0uQ4TetIrF50fw2rt7ue2zcnoCwyhoF0wgKkyMHxuFnBulUEe-yTjxnSjKwiDTXNlCWC3iQJrYcCRnJTQYoOgIX6roGBrjyVifgBdyIbkIjdZkUakUgbzACDnJbQdZEDfBr9SYYtla3E64eE_rpshOLSmpJbVqSWnLVb1luuyr8dviVmWbtPzE8jQkckXeH90nTbiubLF6_KOw0z-tPoOt0BrTxV1a0Chmc30Om7go3vLZhTt5H9EU0cA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah98UgL9SJfNNxFl4jZE59hbaK4JCLKNddvf7yVrK4oK-tzkKHdpfvfR-x3AeSIM4ZwRDGMeMsJrxZQxPlOYWD4wVfddh3e_LbrdxmDQfMz7uLPib_eiJOlu6rLZzVGTMHurkhcTsXgZVjgBliXMf3rul6WDuOEm2VLYwhmhT7MoZX4n4jMYfXiYX4qiDmvutv71ltuwmbuW3vXiLOzAkh7uwkan5GXN9uDq2mvZjAY5fHQsPOuw5uO7vJHxMJllJGBO4XOeIvTGRS4-24eXu9veTYvl0xMYRkF9ygRiig3jxyZFzk2aoo58k3Dyd6IoCYNE89Q2wmoRB8rEhiMFK6HBAEVT-CqNDqAyHA31IXghF4qL0GhNFlVpSiAvMEJOcutBEsRV8As1Ssypxe2EizdZkiI7tUhSi7RqkbTlotwyXvBq_La4VthG5p9YJkNyrij6o_ukCpeFLT4e_yjs6E-rz2Ct1eu0Zfu--3AM66E1rMvB1KAyncz0CazifPqaTU7dKXwHr3fUpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBt1itmoMnZWkem27rrailYi0FtfS2ZF8gSFqatL_f2TRJUVQQz9kMYWaz883MzjcAlxEz6OcMIzKkPkF_LYgwxiVCRpYPTDTcrMN72GP9fnM0ag3yOadJcdu9KEkuehosS1Oc1ifK1MvGt4ymhNgTFhFNQMJVWKP2Hr0N15-HZRkhbGZTbTGEoQQ9Uasoa34n4rNjWqLNLwXSzO90dv79xbuwnUNOp73YI3uwouN92Hoq-VqTA7hpO12b6UAgiNvFsUA2H-vljI0jo1mCAuYYVuepQ2dS5OiTQ3jt3L_cdkk-VYHIwGukhEmpZNO4oVGSUqOU1IFrIoo4KAgi34s0VbZBVrPQEyY0VGIQ4xvpSdZirlDBEVTicayPwfEpE5T5Rmu0tFAKnT-TgaQot-FFXlgFt1AplznluJ188c5LsuRMLRzVwq1aOL5yVb4yWfBt_La4VtiJ579ewn0EXRgV4jlThevCLsvHPwo7-dPqC9gY3HV476H_eAqbvrVrlpqpQSWdzvQZrMt5-pZMz7MN-QHuIN2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hamiltonian+formulation+of+causal+variational+principles&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Finster%2C+Felix&rft.au=Kleiner%2C+Johannes&rft.date=2017-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=56&rft.issue=3&rft_id=info:doi/10.1007%2Fs00526-017-1153-5&rft.externalDocID=10_1007_s00526_017_1153_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon