A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations
This paper presents a new contact searching algorithm for large deformation mortar-based contact formulations. In this algorithm, a bounding volume hierarchy, defined in the context of a binary tree, is built for each contact surface based on the geometry of the surface. A global contact searching p...
Saved in:
| Published in: | Computational mechanics Vol. 41; no. 2; pp. 189 - 205 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.01.2008
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0178-7675, 1432-0924 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a new contact searching algorithm for large deformation mortar-based contact formulations. In this algorithm, a bounding volume hierarchy, defined in the context of a binary tree, is built for each contact surface based on the geometry of the surface. A global contact searching procedure based on these bounding volume trees is first performed to find all candidate contact element pairs, and then a local searching procedure is done to find all the mortar segments having contributions to the mortar integrals that define the contact formulation. The searching algorithm is shown to be very efficient and readily applicable to a variety of large sliding contact problems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-7675 1432-0924 |
| DOI: | 10.1007/s00466-006-0116-z |