Using low-power platforms for Evolutionary Multi-Objective Optimization algorithms

Nowadays, the application of Evolutionary Multi-Objective Optimization (EMO) algorithms in real-time systems receives considerable interest. In this context, the energy efficiency of computational systems is of paramount relevance. Recently, the use of embedded systems based on heterogeneous (CPU + ...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 73; no. 1; pp. 302 - 315
Main Authors: Moreno, J. J., Ortega, G., Filatovas, E., Martínez, J. A., Garzón, Ester M.
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2017
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nowadays, the application of Evolutionary Multi-Objective Optimization (EMO) algorithms in real-time systems receives considerable interest. In this context, the energy efficiency of computational systems is of paramount relevance. Recently, the use of embedded systems based on heterogeneous (CPU + GPU) platforms is consistently increasing. For example, NVIDIA Jetson cards are low-power computers designed for development of embedded applications. They incorporate Tegra processors which feature a CUDA-capable GPU. This way, Jetson cards can be considered as a prototype of low-power computer of High-Performance Computing. In this work, our interest is focused on the NSGA-II algorithm, a well-known representative of EMO algorithms. The strength of NSGA-II lies in its Non-Dominated Sorting (NDS) procedure of a population of individuals. Our purpose on the low-power computers is twofold: to define and evaluate the parallel NSGA-II versions with major focus on NDS procedure on the Jetson platforms and to determinate the size of NSGA-II problems which can be solved. The results show that the parallel version which achieves the best performance depends on the objectives functions and the frequencies of the clocks of the cores and memory of the GPU. The analysis of the results shows the capability of the Jetson as a low-consumption platform which allows to accelerate the execution of instances of the state-of-the-art EMO algorithm—NSGA-II.
AbstractList Nowadays, the application of Evolutionary Multi-Objective Optimization (EMO) algorithms in real-time systems receives considerable interest. In this context, the energy efficiency of computational systems is of paramount relevance. Recently, the use of embedded systems based on heterogeneous (CPU + GPU) platforms is consistently increasing. For example, NVIDIA Jetson cards are low-power computers designed for development of embedded applications. They incorporate Tegra processors which feature a CUDA-capable GPU. This way, Jetson cards can be considered as a prototype of low-power computer of High-Performance Computing. In this work, our interest is focused on the NSGA-II algorithm, a well-known representative of EMO algorithms. The strength of NSGA-II lies in its Non-Dominated Sorting (NDS) procedure of a population of individuals. Our purpose on the low-power computers is twofold: to define and evaluate the parallel NSGA-II versions with major focus on NDS procedure on the Jetson platforms and to determinate the size of NSGA-II problems which can be solved. The results show that the parallel version which achieves the best performance depends on the objectives functions and the frequencies of the clocks of the cores and memory of the GPU. The analysis of the results shows the capability of the Jetson as a low-consumption platform which allows to accelerate the execution of instances of the state-of-the-art EMO algorithm—NSGA-II.
Nowadays, the application of Evolutionary Multi-Objective Optimization (EMO) algorithms in real-time systems receives considerable interest. In this context, the energy efficiency of computational systems is of paramount relevance. Recently, the use of embedded systems based on heterogeneous (CPU + GPU) platforms is consistently increasing. For example, NVIDIA Jetson cards are low-power computers designed for development of embedded applications. They incorporate Tegra processors which feature a CUDA-capable GPU. This way, Jetson cards can be considered as a prototype of low-power computer of High-Performance Computing. In this work, our interest is focused on the NSGA-II algorithm, a well-known representative of EMO algorithms. The strength of NSGA-II lies in its Non-Dominated Sorting (NDS) procedure of a population of individuals. Our purpose on the low-power computers is twofold: to define and evaluate the parallel NSGA-II versions with major focus on NDS procedure on the Jetson platforms and to determinate the size of NSGA-II problems which can be solved. The results show that the parallel version which achieves the best performance depends on the objectives functions and the frequencies of the clocks of the cores and memory of the GPU. The analysis of the results shows the capability of the Jetson as a low-consumption platform which allows to accelerate the execution of instances of the state-of-the-art EMO algorithm—NSGA-II.
Author Filatovas, E.
Martínez, J. A.
Garzón, Ester M.
Moreno, J. J.
Ortega, G.
Author_xml – sequence: 1
  givenname: J. J.
  surname: Moreno
  fullname: Moreno, J. J.
  organization: Group of Supercomputation-Algorithms, Department of Informatics, University of Almería, ceiA3
– sequence: 2
  givenname: G.
  surname: Ortega
  fullname: Ortega, G.
  organization: Group of Supercomputation-Algorithms, Department of Informatics, University of Almería, ceiA3
– sequence: 3
  givenname: E.
  surname: Filatovas
  fullname: Filatovas, E.
  organization: Faculty of Fundamental Sciences, Vilnius Gediminas Technical University
– sequence: 4
  givenname: J. A.
  surname: Martínez
  fullname: Martínez, J. A.
  organization: Group of Supercomputation-Algorithms, Department of Informatics, University of Almería, ceiA3
– sequence: 5
  givenname: Ester M.
  surname: Garzón
  fullname: Garzón, Ester M.
  email: gmartin@ual.es
  organization: Group of Supercomputation-Algorithms, Department of Informatics, University of Almería, ceiA3
BookMark eNp9kM9LwzAUx4NMcJv-Ad4KnqMvSdt0RxnzB0wGMs8hzZKZ0TY1STf0r7d1HkTQS97hfT8v730maNS4RiN0SeCaAPCbQAilHAPJMSlyiuEEjUnGGYa0SEdoDDMKuMhSeoYmIewAIGWcjdHzS7DNNqncAbfuoH3SVjIa5-uQ9G-y2Luqi9Y10r8nT10VLV6VO62i3etk1UZb2w859BNZbZ238bUO5-jUyCroi-86Reu7xXr-gJer-8f57RIrRvKI-UxtGFCZ0zQtczA83xjJmTFlQbXilCigqZoVjMusJBuT8U1mGKS5Vn2fsCm6Oo5tvXvrdIhi5zrf9D8KUhRQDCdCn-LHlPIuBK-NUDZ-bRy9tJUgIAZ_4uhP9P7E4E8MJPlFtt7WvYd_GXpkQp9tttr_2OlP6BMbxIVx
CitedBy_id crossref_primary_10_1088_1361_6501_ad6925
crossref_primary_10_1016_j_cie_2023_109815
crossref_primary_10_1016_j_future_2021_09_011
crossref_primary_10_1016_j_jpdc_2018_04_012
crossref_primary_10_1007_s10898_018_0669_3
Cites_doi 10.1162/106365600568167
10.1016/j.jmsy.2013.07.001
10.1016/j.jpdc.2012.04.003
10.5019/j.ijcir.2006.67
10.1109/TEVC.2007.892759
10.1111/itor.12039
10.1016/j.engappai.2012.01.018
10.1061/(ASCE)WR.1943-5452.0000515
10.1162/evco.2008.16.3.355
10.1080/03772063.2007.10876163
10.1162/EVCO_a_00041
10.15388/Informatica.2015.37
10.1016/j.trc.2009.05.016
10.1016/j.engappai.2014.01.007
10.1016/j.ejor.2015.01.059
10.1109/4235.996017
10.1109/TEVC.2005.861417
10.1109/TEVC.2003.817234
10.1109/CEC.2015.7257074
10.1007/978-3-642-31500-8_38
10.1007/978-3-642-36803-5_31
10.1109/CCDC.2009.5192490
10.1145/1570256.1570354
10.1109/ECC.2014.6862338
10.1109/ICNNB.2005.1614939
10.1007/11539902_134
10.1109/IPDPS.2008.4536375
10.1109/CEC.2002.1007032
10.1007/978-3-642-33021-6_35
10.1007/978-3-319-01854-6_8
10.1007/978-90-481-9929-7_7
10.1007/978-3-540-30217-9_84
10.1007/978-3-642-32922-7_13
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-016-1862-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 315
ExternalDocumentID 10_1007_s11227_016_1862_0
GrantInformation_xml – fundername: Junta de Andalucía (ES)
  grantid: P11-TIC7176
– fundername: Spanish Ministry of Science
  grantid: CAPAP-H5 network TIN2014-53522
– fundername: European Union
  grantid: COST Action IC1305
– fundername: Sapnish Ministry of Science
  grantid: TIN15-66680
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-79cd302a6244b60f76dfa73ffb82ec721c024c9837a5b1df57d5f3046ec2ec13
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392397200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:51:40 EDT 2025
Sat Nov 29 07:50:53 EST 2025
Tue Nov 18 20:42:47 EST 2025
Fri Feb 21 02:27:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evolutionary Multi-Objective algorithms
NSGA-II
Energy efficiency
Low-power platform
Jetson
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-79cd302a6244b60f76dfa73ffb82ec721c024c9837a5b1df57d5f3046ec2ec13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880800040
PQPubID 2043774
PageCount 14
ParticipantIDs proquest_journals_1880800040
crossref_citationtrail_10_1007_s11227_016_1862_0
crossref_primary_10_1007_s11227_016_1862_0
springer_journals_10_1007_s11227_016_1862_0
PublicationCentury 2000
PublicationDate 20170100
2017-1-00
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 1
  year: 2017
  text: 20170100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mamdoohi, Abas, Samsudin, Ibrahim, Hidayat, Mahdi (CR26) 2012; 25
Coll, Factorovich, Loiseau, Gómez (CR3) 2013; 20
Fang, Wang, Tu, Horstemeyer (CR14) 2008; 16
Brodtkorb, Hagen, Sætra (CR1) 2013; 73
Dujardin, Vanderpooten, Boillot (CR12) 2015; 244
Cortés, Sáez, Milla, Nuez, Riquelme (CR5) 2010; 18
CR17
CR16
CR38
CR37
Jensen (CR19) 2003; 7
CR36
CR13
CR34
CR11
CR33
Deb, Sundar, Udaya Bhaskara Rao, Chaudhuri (CR7) 2006; 2
CR10
Odan, Ribeiro Reis, Kapelan (CR32) 2015; 141
CR31
CR30
Smutnicki, Rudy, Żelazny (CR35) 2014; 8
Khamis, Gomaa (CR20) 2014; 29
Deb, Pratap, Agarwal, Meyarivan (CR6) 2002; 6
Knowles, Corne (CR21) 2000; 8
Zhang, Li (CR39) 2007; 11
CR4
CR8
Huband, Hingston, Barone, While (CR18) 2006; 10
CR29
CR28
Dehuri, Ghosh, Mall (CR9) 2007; 53
CR25
CR24
CR23
CR22
CR42
CR41
CR40
Filatovas, Kurasova, Sindhya (CR15) 2015; 26
McClymont, Keedwell (CR27) 2012; 20
Chang, Dong, Yang (CR2) 2013; 32
1862_CR4
1862_CR8
K Deb (1862_CR7) 2006; 2
X Chang (1862_CR2) 2013; 32
1862_CR28
1862_CR29
AR Brodtkorb (1862_CR1) 2013; 73
P Coll (1862_CR3) 2013; 20
Q Zhang (1862_CR39) 2007; 11
S Huband (1862_CR18) 2006; 10
1862_CR41
1862_CR42
MA Khamis (1862_CR20) 2014; 29
1862_CR22
FK Odan (1862_CR32) 2015; 141
1862_CR23
1862_CR24
1862_CR25
H Fang (1862_CR14) 2008; 16
C Smutnicki (1862_CR35) 2014; 8
C Cortés (1862_CR5) 2010; 18
1862_CR40
S Dehuri (1862_CR9) 2007; 53
MT Jensen (1862_CR19) 2003; 7
1862_CR16
1862_CR38
1862_CR17
E Filatovas (1862_CR15) 2015; 26
1862_CR30
1862_CR31
1862_CR10
1862_CR11
1862_CR33
Y Dujardin (1862_CR12) 2015; 244
1862_CR34
1862_CR13
1862_CR36
K Deb (1862_CR6) 2002; 6
1862_CR37
G Mamdoohi (1862_CR26) 2012; 25
K McClymont (1862_CR27) 2012; 20
J Knowles (1862_CR21) 2000; 8
References_xml – volume: 8
  start-page: 149
  issue: 2
  year: 2000
  end-page: 172
  ident: CR21
  article-title: Approximating the non-dominated front using the Pareto archived evolution strategy
  publication-title: Evol Comput
  doi: 10.1162/106365600568167
– ident: CR22
– volume: 32
  start-page: 741
  issue: 4
  year: 2013
  end-page: 751
  ident: CR2
  article-title: Multi-objective real-time dispatching for integrated delivery in a fab using ga based simulation optimization
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2013.07.001
– volume: 73
  start-page: 4
  issue: 1
  year: 2013
  end-page: 13
  ident: CR1
  article-title: Graphics processing unit (GPU) programming strategies and trends in GPU computing
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2012.04.003
– volume: 2
  start-page: 273
  issue: 3
  year: 2006
  end-page: 286
  ident: CR7
  article-title: Reference point based multi-objective optimization using evolutionary algorithms
  publication-title: Int J Comput Intell Res
  doi: 10.5019/j.ijcir.2006.67
– ident: CR4
– ident: CR16
– ident: CR37
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  ident: CR39
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 667
  issue: 5
  year: 2013
  end-page: 679
  ident: CR3
  article-title: A linear programming approach for adaptive synchronization of traffic signals
  publication-title: Int Trans Oper Res
  doi: 10.1111/itor.12039
– ident: CR30
– volume: 25
  start-page: 869
  issue: 4
  year: 2012
  end-page: 873
  ident: CR26
  article-title: Implementation of genetic algorithm in an embedded microcontroller-based polarization control system
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.01.018
– ident: CR10
– volume: 141
  start-page: 04015,011
  issue: 9
  year: 2015
  ident: CR32
  article-title: Real-time multiobjective optimization of operation of water supply systems
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000515
– volume: 16
  start-page: 355
  issue: 3
  year: 2008
  end-page: 384
  ident: CR14
  article-title: An efficient non-dominated sorting method for evolutionary algorithms
  publication-title: Evol Comput
  doi: 10.1162/evco.2008.16.3.355
– ident: CR33
– ident: CR29
– ident: CR8
– volume: 53
  start-page: 475
  issue: 5
  year: 2007
  end-page: 483
  ident: CR9
  article-title: Parallel multi-objective genetic algorithm for classification rule mining
  publication-title: IETE J Res
  doi: 10.1080/03772063.2007.10876163
– volume: 20
  start-page: 1
  issue: 1
  year: 2012
  end-page: 26
  ident: CR27
  article-title: Deductive sort and climbing sort: new methods for non-dominated sorting
  publication-title: Evol Comput
  doi: 10.1162/EVCO_a_00041
– ident: CR40
– volume: 26
  start-page: 33
  issue: 1
  year: 2015
  end-page: 50
  ident: CR15
  article-title: Reference point based multi-objective optimization using evolutionary algorithms
  publication-title: Informatica
  doi: 10.15388/Informatica.2015.37
– ident: CR25
– ident: CR42
– ident: CR23
– volume: 18
  start-page: 757
  issue: 5
  year: 2010
  end-page: 769
  ident: CR5
  article-title: Hybrid predictive control for real-time optimization of public transport systems’ operations based on evolutionary multi-objective optimization
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2009.05.016
– volume: 29
  start-page: 134
  year: 2014
  end-page: 151
  ident: CR20
  article-title: Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.01.007
– volume: 8
  start-page: 13
  issue: 1–2
  year: 2014
  end-page: 23
  ident: CR35
  article-title: Very fast non-dominated sorting
  publication-title: Decis Mak Manuf Serv
– ident: CR38
– ident: CR17
– volume: 244
  start-page: 601
  issue: 2
  year: 2015
  end-page: 610
  ident: CR12
  article-title: A multi-objective interactive system for adaptive traffic control
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.01.059
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR6
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: CR34
– ident: CR36
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  end-page: 506
  ident: CR18
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.861417
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 7
  start-page: 503
  issue: 5
  year: 2003
  end-page: 515
  ident: CR19
  article-title: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.817234
– ident: 1862_CR16
  doi: 10.1109/CEC.2015.7257074
– volume: 26
  start-page: 33
  issue: 1
  year: 2015
  ident: 1862_CR15
  publication-title: Informatica
  doi: 10.15388/Informatica.2015.37
– ident: 1862_CR22
  doi: 10.1007/978-3-642-31500-8_38
– volume: 141
  start-page: 04015,011
  issue: 9
  year: 2015
  ident: 1862_CR32
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000515
– ident: 1862_CR28
– volume: 18
  start-page: 757
  issue: 5
  year: 2010
  ident: 1862_CR5
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2009.05.016
– ident: 1862_CR23
  doi: 10.1007/978-3-642-36803-5_31
– ident: 1862_CR30
– ident: 1862_CR36
  doi: 10.1109/CCDC.2009.5192490
– ident: 1862_CR37
  doi: 10.1145/1570256.1570354
– volume: 8
  start-page: 13
  issue: 1–2
  year: 2014
  ident: 1862_CR35
  publication-title: Decis Mak Manuf Serv
– volume: 244
  start-page: 601
  issue: 2
  year: 2015
  ident: 1862_CR12
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2015.01.059
– ident: 1862_CR24
  doi: 10.1109/ECC.2014.6862338
– ident: 1862_CR34
  doi: 10.1109/ICNNB.2005.1614939
– ident: 1862_CR38
  doi: 10.1007/11539902_134
– volume: 16
  start-page: 355
  issue: 3
  year: 2008
  ident: 1862_CR14
  publication-title: Evol Comput
  doi: 10.1162/evco.2008.16.3.355
– ident: 1862_CR40
– ident: 1862_CR13
  doi: 10.1109/IPDPS.2008.4536375
– ident: 1862_CR17
– ident: 1862_CR42
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 1862_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.861417
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 1862_CR21
  publication-title: Evol Comput
  doi: 10.1162/106365600568167
– volume: 20
  start-page: 1
  issue: 1
  year: 2012
  ident: 1862_CR27
  publication-title: Evol Comput
  doi: 10.1162/EVCO_a_00041
– ident: 1862_CR8
  doi: 10.1109/CEC.2002.1007032
– volume: 25
  start-page: 869
  issue: 4
  year: 2012
  ident: 1862_CR26
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.01.018
– ident: 1862_CR31
– volume: 20
  start-page: 667
  issue: 5
  year: 2013
  ident: 1862_CR3
  publication-title: Int Trans Oper Res
  doi: 10.1111/itor.12039
– ident: 1862_CR29
– ident: 1862_CR11
  doi: 10.1007/978-3-642-33021-6_35
– volume: 32
  start-page: 741
  issue: 4
  year: 2013
  ident: 1862_CR2
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2013.07.001
– volume: 2
  start-page: 273
  issue: 3
  year: 2006
  ident: 1862_CR7
  publication-title: Int J Comput Intell Res
– ident: 1862_CR10
  doi: 10.1007/978-3-319-01854-6_8
– ident: 1862_CR4
– volume: 29
  start-page: 134
  year: 2014
  ident: 1862_CR20
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.01.007
– volume: 7
  start-page: 503
  issue: 5
  year: 2003
  ident: 1862_CR19
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.817234
– ident: 1862_CR25
  doi: 10.1007/978-90-481-9929-7_7
– ident: 1862_CR41
  doi: 10.1007/978-3-540-30217-9_84
– volume: 73
  start-page: 4
  issue: 1
  year: 2013
  ident: 1862_CR1
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2012.04.003
– ident: 1862_CR33
  doi: 10.1007/978-3-642-32922-7_13
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 1862_CR6
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 53
  start-page: 475
  issue: 5
  year: 2007
  ident: 1862_CR9
  publication-title: IETE J Res
  doi: 10.1080/03772063.2007.10876163
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 1862_CR39
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
SSID ssj0004373
Score 2.128717
Snippet Nowadays, the application of Evolutionary Multi-Objective Optimization (EMO) algorithms in real-time systems receives considerable interest. In this context,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms Cards
Clocks
Compilers
Computer Science
Embedded systems
Evolutionary algorithms
Graphics processing units
Interpreters
Multiple objective analysis
Optimization
Platforms
Power management
Processor Architectures
Programming Languages
Sorting algorithms
Title Using low-power platforms for Evolutionary Multi-Objective Optimization algorithms
URI https://link.springer.com/article/10.1007/s11227-016-1862-0
https://www.proquest.com/docview/1880800040
Volume 73
WOSCitedRecordID wos000392397200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG_M9ODF-Rmn0_TgSdME6KDlaMwWT9PMxexGSkt1hn0EcMb_3lcookZN9MKBltK8vvb9Xt8XQmeuyxTTOiaKKnNbFfeIEFQQH16a7C8AoXlZbIINh3wyCW9tHHdee7vXJsnypG6C3VzPM26SAXEBhhPQ09dB2nGzG0d3900wJK3MyiHoRRx-VpsyvxviszBqEOYXo2gpawbtf81yG21ZaIkvK17YQWvJfBe167IN2O7iPTQq3QRwunghS1MjDS9TURjsmmN44v7KcqPIXnEZn0tu4qfqXMQ3cMLMbOgmFunDIpsWj7N8H40H_fHVNbGlFYikblAQFkpFHU8EIN3jwNEsUFowCovGvUSCVihBdssQtFfhx67SPlO-NkbUREK7Sw9Qa76YJ4cI9yQzCWF4z9dxj8VUeJ4ATMgVIEGggu4gpyZxJG3acVP9Io2ahMmGZJFxNTMki5wOOn__ZFnl3Pitc7det8huvzwySea44QVovqjX6UPzT4Md_an3Mdr0jJAvL2S6qFVkz8kJ2pCrYppnpyVXvgFUO9ts
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yBb04P3E6NQdPSmBt2qY9imwozk3mkN1KmjQ66T5o68T_3pd-WBUV9NJDk6bh5SXv9_K-EDoxDCaZUgGRVOrbqsAinFNObHips78AhHazYhOs13NHI--2iONOSm_30iSZndRVsJthmtpN0iEGwHACevqyBQJL-_EN7u6rYEiam5U90Itc-FlpyvxuiM_CqEKYX4yimazp1P81yw20XkBLfJ7zwiZaCqdbqF6WbcDFLt5Gg8xNAEezFzLXNdLwPOKpxq4JhiduLwpu5PErzuJzST94ys9F3IcTZlKEbmIePczicfo4SXbQsNMeXlySorQCEdRwUsI8IWnL5A5I98BpKeZIxRmFRXPNUIBWKEB2Cw-0V24HhlQ2k7bSRtRQQLtBd1FtOpuGewhbgumEMK5lq8BiAeWmyQETuhKQIFBBNVCrJLEvirTjuvpF5FcJkzXJfO1qpknmtxro9P2TeZ5z47fOzXLd_GL7Jb5OMudqXoDms3KdPjT_NNj-n3ofo9XL4U3X7171rg_QmqkFfnY500S1NH4OD9GKWKTjJD7KOPQNpkLeUA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoMnJbT7zO5R1KIobdEivS3ZZKOVvuiuFf-9M_twVVQQL3vYZLNhMsl8k3kRcmQYXHGtQ6YshbdVoc2EsARz4CVmfwEI7aXFJni77fX7fjevcxoX3u6FSTKLacAsTeOkMVW6UQa-GaaJLpMuMwCSM9DZF22sGYTq-t19GRhpZSZmH3QkD35cmDW_G-KzYCrR5hcDaSp3WtV_z3iNrOaQk55mPLJOFqLxBqkW5Rxovrs3yW3qPkCHkxc2xdppdDoUCWLamMKTXsxzLhWzV5rG7bJO-JSdl7QDJ88oD-mkYvgwmQ2Sx1G8RXqti97ZJctLLjBpGW7CuC-V1TSFC1I_dJuau0oLbsFiemYkQVuUINOlD1qtcEJDaYcrR6NxNZLQbljbpDKejKMdQm3JMVGMZzs6tHloCdMUgBU9BQgRqKBrpFmQO5B5OnKsijEMykTKSLIAXdCQZEGzRo7fP5lmuTh-61wv1jDIt2UcYPI5D_kCmk-KNfvQ_NNgu3_qfUiWu-et4Oaqfb1HVkzEAemdTZ1UktlztE-W5DwZxLODlFnfAN5J5zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+low-power+platforms+for+Evolutionary+Multi-Objective+Optimization+algorithms&rft.jtitle=The+Journal+of+supercomputing&rft.au=Moreno%2C+J.+J.&rft.au=Ortega%2C+G.&rft.au=Filatovas%2C+E.&rft.au=Mart%C3%ADnez%2C+J.+A.&rft.date=2017-01-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=73&rft.issue=1&rft.spage=302&rft.epage=315&rft_id=info:doi/10.1007%2Fs11227-016-1862-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_016_1862_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon