Smoothing identification for digital image forensics
With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in r...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 78; číslo 7; s. 8225 - 8245 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.04.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in recent years, people prefer to retouch images with smoothing algorithms to pursue better appearance. Hence it is required to expose such manipulations in digital image forensics. In this paper, a new scheme for detecting the operation of smoothing is proposed. The proposed scheme is based on analyzing the statistical property which can be considered as computation efficiently when compares to machine learning algorithms. Furthermore, a method for texture analysis is also proposed to specify the algorithm that used for smoothing. The second method adopt the features extracted from edge area. The features are fed into support vector machine for classification. |
|---|---|
| AbstractList | With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in recent years, people prefer to retouch images with smoothing algorithms to pursue better appearance. Hence it is required to expose such manipulations in digital image forensics. In this paper, a new scheme for detecting the operation of smoothing is proposed. The proposed scheme is based on analyzing the statistical property which can be considered as computation efficiently when compares to machine learning algorithms. Furthermore, a method for texture analysis is also proposed to specify the algorithm that used for smoothing. The second method adopt the features extracted from edge area. The features are fed into support vector machine for classification. |
| Author | Ding, Feng Shi, Yun-Qing Zhu, Guopu Shi, Yuxi |
| Author_xml | – sequence: 1 givenname: Feng surname: Ding fullname: Ding, Feng organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology – sequence: 2 givenname: Yuxi surname: Shi fullname: Shi, Yuxi organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology – sequence: 3 givenname: Guopu orcidid: 0000-0001-7956-5343 surname: Zhu fullname: Zhu, Guopu email: gp.zhu@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences – sequence: 4 givenname: Yun-Qing surname: Shi fullname: Shi, Yun-Qing organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology |
| BookMark | eNp9kEFLAzEQhYNUsK3-AG8LnqOTbDbZPUpRKxQ8qOcQs8ma0iY1SQ_-e7OsIAh6muEx38ybt0AzH7xB6JLANQEQN4kQYBQDaTFvQWB-guakETUWgpJZ6esWsGiAnKFFSlsAwhvK5og970PI784PleuNz846rbILvrIhVr0bXFa7yu3VYEbF-OR0OkenVu2SufiuS_R6f_eyWuPN08Pj6naDdU14xoK_MW27jjddoxS0QneMF0Wrtta16C3TfatA96rTQhndgbasV03PKIDhdb1EV9PeQwwfR5Oy3IZj9OWkpIR2ogVCWZki05SOIaVorDzEYjh-SgJyDEdO4cgSjhzDkbww4hejy6Pj3zkqt_uXpBOZyhU_mPjj6W_oC2swerk |
| CitedBy_id | crossref_primary_10_1007_s11554_019_00907_5 crossref_primary_10_1007_s11042_022_12143_4 crossref_primary_10_1016_j_jvcir_2024_104075 crossref_primary_10_1109_TCSS_2022_3222682 crossref_primary_10_1007_s42001_024_00265_8 |
| Cites_doi | 10.1016/j.jvcir.2017.11.009 10.1109/TIP.2002.801126 10.1109/MSP.2008.931078 10.1109/TIFS.2014.2300937 10.1109/TIP.2013.2277814 10.1109/TIFS.2013.2273394 10.1016/j.image.2018.02.011 10.1109/TIFS.2006.873602 10.1016/j.jvcir.2018.01.011 10.1155/2013/518479 10.1109/TPAMI.1985.4767641 10.1016/B978-0-08-051581-6.50024-6 10.1016/j.sigpro.2018.01.011 10.1142/9789814343138_0010 10.1109/TCSVT.2018.2799243 10.1109/TIFS.2014.2381872 10.1016/0734-189X(83)90047-6 10.1007/978-3-540-30114-1_6 10.1109/LSP.2014.2359033 10.1038/scientificamerican0608-66 10.1109/WIFS.2014.7084313 10.1109/CVPR.2014.379 10.1007/s11042-017-4604-2 10.1007/11744085_44 10.1145/2909827.2930786 10.1109/83.242353 10.1109/72.788645 10.1109/ICME.2010.5583869 10.1109/TIFS.2011.2161761 10.1109/APSIPA.2017.8282150 10.1109/TIFS.2014.2312817 10.1109/ICIP.2011.6115849 10.1007/s11042-015-2759-2 10.1109/ACCESS.2013.2260814 10.1109/TIFS.2014.2359368 10.1016/j.jvcir.2018.05.020 10.1109/ICCV.1998.710815 10.1007/s11042-016-4153-0 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-018-6807-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 8245 |
| ExternalDocumentID | 10_1007_s11042_018_6807_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-76b4cf996595aa087c9464cfca83c37df4cd8a0cda9c7aec90cf4da5d4200e633 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466381800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 04 22:31:27 EST 2025 Tue Nov 18 21:05:58 EST 2025 Sat Nov 29 03:26:03 EST 2025 Fri Feb 21 02:37:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Image forensics Texture analysis Bilateral filter Smoothing detection Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-76b4cf996595aa087c9464cfca83c37df4cd8a0cda9c7aec90cf4da5d4200e633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7956-5343 |
| PQID | 2129780124 |
| PQPubID | 54626 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2129780124 crossref_primary_10_1007_s11042_018_6807_6 crossref_citationtrail_10_1007_s11042_018_6807_6 springer_journals_10_1007_s11042_018_6807_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20190400 2019-4-00 20190401 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 4 year: 2019 text: 20190400 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChangTKuoC-CTexture analysis and classification with tree-structured wavelet transformIEEE Trans Image Process19932442944110.1109/83.242353 FaridHDigital image forensicsSci Am20082986667110.1038/scientificamerican0608-66 Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security. ACM, pp 5–10 Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Media forensics and security II, vol 7541. International society for optics and photonics, p 754110 LeeJ-SDigital image smoothing and the sigma filterComput Vis, Graphics, Image Process1983242255269138110910.1016/0734-189X(83)90047-6 Canny J (1987) A computational approach to edge detection. In: Readings in computer vision. Elsevier, pp 184–203 Wu R, Li X, Yang B (2011) Identifying computer generated graphics via histogram features. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 1933–1936 LiJLiXYangBSunXSegmentation-based image copy-move forgery detection schemeIEEE Trans Inf Forensics Secur201510350751810.1109/TIFS.2014.2381872 Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision. Springer, pp 568–580 YangJXieJZhuGKwongSShiY-QAn effective method for detecting double jpeg compression with the same quantization matrixIEEE Trans Inf Forensics Secur20149111933194210.1109/TIFS.2014.2359368 Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In 1998 6th international conference on computer vision. IEEE, pp 839–846 DruckerHWuDVapnikVNSupport vector machines for spam categorizationIEEE Trans Neural Netw19991051048105410.1109/72.788645 ZhangYQinCZhangWLiuFLuoXOn the fault-tolerant performance for a class of robust image steganographySignal Process20181469911110.1016/j.sigpro.2018.01.011 EladMOn the origin of the bilateral filter and ways to improve itIEEE Trans Image Process2002111011411151196604310.1109/TIP.2002.801126 YuanH-DBlind forensics of median filtering in digital imagesIEEE Trans Inf Forensics Secur2011641335134510.1109/TIFS.2011.2161761 DingFZhuGYangJXieJShiY-QEdge perpendicular binary coding for usm sharpening detectionIEEE Signal Process Lett201522332733110.1109/LSP.2014.2359033 Wu Y, Li X, Zhao Y, Ni R (2017) A new detector for jpeg decompressed bitmap identification. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, pp 842–845 HuRLiXGuoZDecorrelated local binary patterns for efficient texture classificationMultimed Tools Appl20187766863688210.1007/s11042-017-4604-2 LuoXSongXLiXZhangWLuJYangCLiuFSteganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codesMultimed Tools and Appl20167521135571358310.1007/s11042-015-2759-2 StammMCWuMLiuKRInformation forensics: an overview of the first decadeIEEE Access2013116720010.1109/ACCESS.2013.2260814 Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: 2010 IEEE international conference on multimedia and expo (ICME). IEEE, pp 89–94 LiBHeJHuangJShiY-QA survey on image steganography and steganalysisJournal of Information Hiding and Multimedia Signal Processing201122142172 CaoGZhaoYNiREdge-based blur metric for tamper detectionJournal of Information Hiding and Multimedia Signal Processing2010112027 LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inf Forensics Secur20061220521410.1109/TIFS.2006.873602 Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2965–2972 WangJLiTShiY-QLianSYeJForensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphicsMultimed Tools Appl20177622237212373710.1007/s11042-016-4153-0 Pasquini C, Boato G, Perez-Gonzalez F (2014) Multiple jpeg compression detection by means of benford-fourier coefficients. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 113–118 Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. In: Storage and retrieval methods and applications for multimedia 2004, vol 5307, International Society for Optics and Photonics, pp 472–481 GonzalezRCWoodsREDigital image processing20022nd edn.Upper Saddle RiverPrentice-Hall Tuceryan M, Jain AK (1993) Texture analysis. In Handbook of pattern recognition and computer vision. World Scientific, pp 235–276 ChenCNiJHuangJBlind detection of median filtering in digital images: a difference domain based approachIEEE Trans Image Process2013221246994710311869710.1109/TIP.2013.2277814 DingFZhuGDongWShiY-QAn efficient weak sharpening detection method for image forensicsJ Vis Commun Image Represent201850939910.1016/j.jvcir.2017.11.009 TangHNiRZhaoYLiXMedian filtering detection of small-size image based on cnnJ Vis Commun Image Represent20185116216810.1016/j.jvcir.2018.01.011 WangPLiuFYangCLuoXParameter estimation of image gamma transformation based on zero-value histogram bin locationsSignal Process Image Commun201864334510.1016/j.image.2018.02.011 Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop. Citeseer Wang P, Liu F, Yang C, Luo X (2018) Blind forensics of image gamma transformation and its application in splicing detection. Journal of Visual Communication and Image Representation Fridrich J (2004) Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: International workshop on information hiding. Springer, pp 67–81 HaddockLJKimDYMukaiSSimple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyesJ Ophthalmol20132013510.1155/2013/518479 KangXStammMCPengALiuKRRobust median filtering forensics using an autoregressive modelIEEE Trans Inf Forensics Secur2013891456146810.1109/TIFS.2013.2273394 CaoGZhaoYNiRLiXContrast enhancement-based forensics in digital imagesIEEE Trans Inf Forensics Secur20149351552510.1109/TIFS.2014.2300937 FridrichJDigital image forensicsIEEE Signal Process Mag2009262263710.1109/MSP.2008.931078 GuoLNiJShiYQUniform embedding for efficient jpeg steganographyIEEE Trans Inf Forensics Secur20149581482510.1109/TIFS.2014.2312817 KuanDTSawchukAAStrandTCChavelPAdaptive noise smoothing filter for images with signal-dependent noiseIEEE Trans Pattern Anal Mach Intell1985216517710.1109/TPAMI.1985.4767641 Ma Y, Luo X, Li X, Bao Z, Zhang Y Selection of rich model steganalysis features based on decision rough set α-positive region reduction, IEEE Transactions on Circuits and Systems for Video Technology, In press. https://doi.org/10.1109/TCSVT.2018.2799243 Idaho N, et al. (2012) The plants database. In: NRCS, national plant data team. Citeseer J Fridrich (6807_CR14) 2009; 26 X Luo (6807_CR28) 2016; 75 J Li (6807_CR26) 2015; 10 LJ Haddock (6807_CR18) 2013; 2013 MC Stamm (6807_CR34) 2013; 1 RC Gonzalez (6807_CR16) 2002 L Guo (6807_CR17) 2014; 9 6807_CR31 X Kang (6807_CR21) 2013; 8 6807_CR30 6807_CR1 6807_CR33 H Tang (6807_CR35) 2018; 51 6807_CR2 6807_CR32 6807_CR13 6807_CR4 6807_CR15 6807_CR37 J Lukas (6807_CR27) 2006; 1 6807_CR36 M Elad (6807_CR11) 2002; 11 6807_CR39 R Hu (6807_CR19) 2018; 77 H Drucker (6807_CR10) 1999; 10 T Chang (6807_CR6) 1993; 2 B Li (6807_CR25) 2011; 2 J-S Lee (6807_CR24) 1983; 24 J Yang (6807_CR43) 2014; 9 H Farid (6807_CR12) 2008; 298 G Cao (6807_CR3) 2010; 1 DT Kuan (6807_CR23) 1985; 2 F Ding (6807_CR8) 2015; 22 6807_CR20 6807_CR42 6807_CR41 6807_CR22 J Wang (6807_CR38) 2017; 76 Y Zhang (6807_CR45) 2018; 146 G Cao (6807_CR5) 2014; 9 P Wang (6807_CR40) 2018; 64 C Chen (6807_CR7) 2013; 22 H-D Yuan (6807_CR44) 2011; 6 6807_CR29 F Ding (6807_CR9) 2018; 50 |
| References_xml | – reference: GonzalezRCWoodsREDigital image processing20022nd edn.Upper Saddle RiverPrentice-Hall – reference: YuanH-DBlind forensics of median filtering in digital imagesIEEE Trans Inf Forensics Secur2011641335134510.1109/TIFS.2011.2161761 – reference: FridrichJDigital image forensicsIEEE Signal Process Mag2009262263710.1109/MSP.2008.931078 – reference: ZhangYQinCZhangWLiuFLuoXOn the fault-tolerant performance for a class of robust image steganographySignal Process20181469911110.1016/j.sigpro.2018.01.011 – reference: ChangTKuoC-CTexture analysis and classification with tree-structured wavelet transformIEEE Trans Image Process19932442944110.1109/83.242353 – reference: DruckerHWuDVapnikVNSupport vector machines for spam categorizationIEEE Trans Neural Netw19991051048105410.1109/72.788645 – reference: Wu Y, Li X, Zhao Y, Ni R (2017) A new detector for jpeg decompressed bitmap identification. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, pp 842–845 – reference: HuRLiXGuoZDecorrelated local binary patterns for efficient texture classificationMultimed Tools Appl20187766863688210.1007/s11042-017-4604-2 – reference: KangXStammMCPengALiuKRRobust median filtering forensics using an autoregressive modelIEEE Trans Inf Forensics Secur2013891456146810.1109/TIFS.2013.2273394 – reference: Pasquini C, Boato G, Perez-Gonzalez F (2014) Multiple jpeg compression detection by means of benford-fourier coefficients. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 113–118 – reference: Wu R, Li X, Yang B (2011) Identifying computer generated graphics via histogram features. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 1933–1936 – reference: KuanDTSawchukAAStrandTCChavelPAdaptive noise smoothing filter for images with signal-dependent noiseIEEE Trans Pattern Anal Mach Intell1985216517710.1109/TPAMI.1985.4767641 – reference: Idaho N, et al. (2012) The plants database. In: NRCS, national plant data team. Citeseer – reference: Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Media forensics and security II, vol 7541. International society for optics and photonics, p 754110 – reference: Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security. ACM, pp 5–10 – reference: Ma Y, Luo X, Li X, Bao Z, Zhang Y Selection of rich model steganalysis features based on decision rough set α-positive region reduction, IEEE Transactions on Circuits and Systems for Video Technology, In press. https://doi.org/10.1109/TCSVT.2018.2799243 – reference: YangJXieJZhuGKwongSShiY-QAn effective method for detecting double jpeg compression with the same quantization matrixIEEE Trans Inf Forensics Secur20149111933194210.1109/TIFS.2014.2359368 – reference: DingFZhuGDongWShiY-QAn efficient weak sharpening detection method for image forensicsJ Vis Commun Image Represent201850939910.1016/j.jvcir.2017.11.009 – reference: Wang P, Liu F, Yang C, Luo X (2018) Blind forensics of image gamma transformation and its application in splicing detection. Journal of Visual Communication and Image Representation – reference: Canny J (1987) A computational approach to edge detection. In: Readings in computer vision. Elsevier, pp 184–203 – reference: EladMOn the origin of the bilateral filter and ways to improve itIEEE Trans Image Process2002111011411151196604310.1109/TIP.2002.801126 – reference: LuoXSongXLiXZhangWLuJYangCLiuFSteganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codesMultimed Tools and Appl20167521135571358310.1007/s11042-015-2759-2 – reference: FaridHDigital image forensicsSci Am20082986667110.1038/scientificamerican0608-66 – reference: ChenCNiJHuangJBlind detection of median filtering in digital images: a difference domain based approachIEEE Trans Image Process2013221246994710311869710.1109/TIP.2013.2277814 – reference: HaddockLJKimDYMukaiSSimple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyesJ Ophthalmol20132013510.1155/2013/518479 – reference: Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2965–2972 – reference: Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: 2010 IEEE international conference on multimedia and expo (ICME). IEEE, pp 89–94 – reference: LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inf Forensics Secur20061220521410.1109/TIFS.2006.873602 – reference: WangPLiuFYangCLuoXParameter estimation of image gamma transformation based on zero-value histogram bin locationsSignal Process Image Commun201864334510.1016/j.image.2018.02.011 – reference: DingFZhuGYangJXieJShiY-QEdge perpendicular binary coding for usm sharpening detectionIEEE Signal Process Lett201522332733110.1109/LSP.2014.2359033 – reference: WangJLiTShiY-QLianSYeJForensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphicsMultimed Tools Appl20177622237212373710.1007/s11042-016-4153-0 – reference: CaoGZhaoYNiRLiXContrast enhancement-based forensics in digital imagesIEEE Trans Inf Forensics Secur20149351552510.1109/TIFS.2014.2300937 – reference: Fridrich J (2004) Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: International workshop on information hiding. Springer, pp 67–81 – reference: TangHNiRZhaoYLiXMedian filtering detection of small-size image based on cnnJ Vis Commun Image Represent20185116216810.1016/j.jvcir.2018.01.011 – reference: LeeJ-SDigital image smoothing and the sigma filterComput Vis, Graphics, Image Process1983242255269138110910.1016/0734-189X(83)90047-6 – reference: Tuceryan M, Jain AK (1993) Texture analysis. In Handbook of pattern recognition and computer vision. World Scientific, pp 235–276 – reference: Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In 1998 6th international conference on computer vision. IEEE, pp 839–846 – reference: LiJLiXYangBSunXSegmentation-based image copy-move forgery detection schemeIEEE Trans Inf Forensics Secur201510350751810.1109/TIFS.2014.2381872 – reference: Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision. Springer, pp 568–580 – reference: CaoGZhaoYNiREdge-based blur metric for tamper detectionJournal of Information Hiding and Multimedia Signal Processing2010112027 – reference: LiBHeJHuangJShiY-QA survey on image steganography and steganalysisJournal of Information Hiding and Multimedia Signal Processing201122142172 – reference: Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. In: Storage and retrieval methods and applications for multimedia 2004, vol 5307, International Society for Optics and Photonics, pp 472–481 – reference: StammMCWuMLiuKRInformation forensics: an overview of the first decadeIEEE Access2013116720010.1109/ACCESS.2013.2260814 – reference: Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop. Citeseer – reference: GuoLNiJShiYQUniform embedding for efficient jpeg steganographyIEEE Trans Inf Forensics Secur20149581482510.1109/TIFS.2014.2312817 – volume: 50 start-page: 93 year: 2018 ident: 6807_CR9 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2017.11.009 – volume: 11 start-page: 1141 issue: 10 year: 2002 ident: 6807_CR11 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2002.801126 – volume: 26 start-page: 26 issue: 2 year: 2009 ident: 6807_CR14 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.931078 – volume: 9 start-page: 515 issue: 3 year: 2014 ident: 6807_CR5 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2014.2300937 – volume: 22 start-page: 4699 issue: 12 year: 2013 ident: 6807_CR7 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2277814 – volume: 8 start-page: 1456 issue: 9 year: 2013 ident: 6807_CR21 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2013.2273394 – volume: 64 start-page: 33 year: 2018 ident: 6807_CR40 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2018.02.011 – volume: 1 start-page: 205 issue: 2 year: 2006 ident: 6807_CR27 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2006.873602 – volume: 51 start-page: 162 year: 2018 ident: 6807_CR35 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.01.011 – volume: 2013 start-page: 5 year: 2013 ident: 6807_CR18 publication-title: J Ophthalmol doi: 10.1155/2013/518479 – ident: 6807_CR15 – volume: 2 start-page: 165 year: 1985 ident: 6807_CR23 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1985.4767641 – ident: 6807_CR32 – ident: 6807_CR2 doi: 10.1016/B978-0-08-051581-6.50024-6 – volume: 146 start-page: 99 year: 2018 ident: 6807_CR45 publication-title: Signal Process doi: 10.1016/j.sigpro.2018.01.011 – ident: 6807_CR37 doi: 10.1142/9789814343138_0010 – ident: 6807_CR29 doi: 10.1109/TCSVT.2018.2799243 – volume: 10 start-page: 507 issue: 3 year: 2015 ident: 6807_CR26 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2014.2381872 – ident: 6807_CR20 – volume: 24 start-page: 255 issue: 2 year: 1983 ident: 6807_CR24 publication-title: Comput Vis, Graphics, Image Process doi: 10.1016/0734-189X(83)90047-6 – volume: 2 start-page: 142 issue: 2 year: 2011 ident: 6807_CR25 publication-title: Journal of Information Hiding and Multimedia Signal Processing – ident: 6807_CR13 doi: 10.1007/978-3-540-30114-1_6 – ident: 6807_CR22 – volume: 22 start-page: 327 issue: 3 year: 2015 ident: 6807_CR8 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2014.2359033 – volume: 298 start-page: 66 issue: 6 year: 2008 ident: 6807_CR12 publication-title: Sci Am doi: 10.1038/scientificamerican0608-66 – ident: 6807_CR31 doi: 10.1109/WIFS.2014.7084313 – ident: 6807_CR33 doi: 10.1109/CVPR.2014.379 – volume: 77 start-page: 6863 issue: 6 year: 2018 ident: 6807_CR19 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4604-2 – ident: 6807_CR30 doi: 10.1007/11744085_44 – ident: 6807_CR1 doi: 10.1145/2909827.2930786 – volume: 2 start-page: 429 issue: 4 year: 1993 ident: 6807_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/83.242353 – volume: 10 start-page: 1048 issue: 5 year: 1999 ident: 6807_CR10 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788645 – ident: 6807_CR4 doi: 10.1109/ICME.2010.5583869 – volume: 6 start-page: 1335 issue: 4 year: 2011 ident: 6807_CR44 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2011.2161761 – volume: 1 start-page: 20 issue: 1 year: 2010 ident: 6807_CR3 publication-title: Journal of Information Hiding and Multimedia Signal Processing – volume-title: Digital image processing year: 2002 ident: 6807_CR16 – ident: 6807_CR42 doi: 10.1109/APSIPA.2017.8282150 – volume: 9 start-page: 814 issue: 5 year: 2014 ident: 6807_CR17 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2014.2312817 – ident: 6807_CR41 doi: 10.1109/ICIP.2011.6115849 – volume: 75 start-page: 13557 issue: 21 year: 2016 ident: 6807_CR28 publication-title: Multimed Tools and Appl doi: 10.1007/s11042-015-2759-2 – volume: 1 start-page: 167 year: 2013 ident: 6807_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2013.2260814 – volume: 9 start-page: 1933 issue: 11 year: 2014 ident: 6807_CR43 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2014.2359368 – ident: 6807_CR39 doi: 10.1016/j.jvcir.2018.05.020 – ident: 6807_CR36 doi: 10.1109/ICCV.1998.710815 – volume: 76 start-page: 23721 issue: 22 year: 2017 ident: 6807_CR38 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-4153-0 |
| SSID | ssj0016524 |
| Score | 2.239794 |
| Snippet | With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8225 |
| SubjectTerms | Algorithms Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Digital photography Digital techniques Feature extraction Forensic sciences Image manipulation Image processing Image processing systems Machine learning Multimedia Information Systems Noise reduction Smoothing Special Purpose and Application-Based Systems Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoffFICrU3z8Sji8EGGOJW9lfSSSMFtsk7_fpOutSoq6FtJk0u5y-Wu3N3vAI6ZpcaGVBGqEkkoEyHJ7JklNrNKCtSZkWWh8DUfDMRoJG-qOu6iznavQ5LlTd0Uu0W-lCSMBHEUOWHLsOKsHfd5fLfDh_fQAUuqTrZuW2cOozqU-R2Jz8ao8TC_BEVLW9Nv_-srN2Gjci2D88VZ2IIlM-lAu27bEFRa3IH1DxiE20CH46mTlnsOcl2lDpXSCpw7G-j80XcVCfKxu3f8iM93x2IH7vuXdxdXpGqlQDCO2JxwllG0skQPVCoUHCVlbgSViDHm2lLUQoWolUSuDMoQLdUq0dRpkWFxvAutyXRi9iCINCYomWYo0MPXC1Q8zpBlieXG_f11Iax5mmKFM-7bXTylDUKy51HqeJR6HqWsCyfvS54XIBu_Te7VgkorfStSZ4A9lJJzVrpwWgumef0jsf0_zT6ANecvyUXiTg9a89mLOYRVfJ3nxeyoPIZvWufXVw priority: 102 providerName: Springer Nature |
| Title | Smoothing identification for digital image forensics |
| URI | https://link.springer.com/article/10.1007/s11042-018-6807-6 https://www.proquest.com/docview/2129780124 |
| Volume | 78 |
| WOSCitedRecordID | wos000466381800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iLYftsMFgWlmpcuAEskgWxx8nxKpNk2Bd1fJRuETOc4wq0Q_ajr-f59RpAWm97GIlTmJZ-cV-L37Pvx_AK-F46WJuGDeZZlyomBXu3DFXOKMV2qLU1Ubhj7LXU6OR7ocFt2VIq6znxGqitjP0a-RvaYr1ZDlkjt7NfzGvGuWjq0FCYw-aniXBSzf0s--bKILIgqgt9YAsY1JHNautc4nfmBInilH_JBP_2qWts_lffLQyO1dHD-3wEzgMDmf0fv2FPIVH5fQYjmoxhyiM7WM4-IuZ8Bnw4WRGGNJxNLYhoajCMCInN7LjH15rJBpPaDbyNT4LHpfP4fPV5afuNQsCCwzTRKyYFAVHpytOQWNiJVFzQTVoVIqptI6jVSZGazRKU6KO0XFrMstpbJUiTU-gMZ1Ny1OIEosZamEFKvSk9gqNTAsUReZkSf-ELYjr15tjYB_3Ihg_8y1vskckJ0Ryj0guWvB688h8Tb2x6-Z2jUIeRuEy30LQgjc1jtvL9zb2YndjZ7BPbpNe5--0obFa3JUv4TH-Xo2Xiw7sya_fOtC8uOz1B3T2QTIqb-KuL89vO9UnSuVg-OUPRxnoSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqAQcoLzE8syBXkBWk43jx6GqKgoC7bKqBEjcUmdso5XYXWAXEH-K39hxNmHbSuXGobfISSzF82Vm7Hl8AHvCc-djbhg3mWZcqJgVvumZL7zRCm3hdFko3Jadjrq60j-m4KWuhQlplbVOLBW1HWA4I_9MKjY0yyFz9PX2jgXWqBBdrSk0xrBouecn2rINv5x-J_l-ajaPjy4OT1jFKsAwTcSISVFw9LpspGdMrCRqLmgEjUoxldZztMrEaI1GaRzqGD23JrOcAOVEOAAllT_DUyVCCllLsteohcgqEl36YrLESR1FLUv1klAIEyeK0XpIJv60gxPn9q94bGnmjhf_twX6CAuVQx19G_8BSzDl-suwWJNVRJXuWob53zovrgA_7w0Io3QddW2VMFViNCInPrLd68ClEnV7pG3DSMjyx-EqXL7Ll6zBdH_Qd-sQJRYz1MIKVBia9is0Mi1QFJmXjva8DYhrceZYdVcPJB83-aQvdEBATgjIAwJy0YD911dux61F3np4q5Z6XmmZYT4ReQMOatxMbv9zso23J9uF2ZOLs3bePu20NmGOXEQ9zlXagunR_YPbhg_4OOoO73dK-Efw873h9AscA0E3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxsxEB6MG0p7aNK0oW5ee2gvLcK7tlaPQwghjklwMIG24NtWO5KCIX40dhvy1_LrMlrvxk0hvuXQ26LdFUj69M1I8wL4JDx3PuaGcZNqxoWKWe5bnvncG63Q5k4XgcLnst9Xg4G-qMFdFQsT3CorTiyI2k4w3JE3iWJDshwSR01fukVcdLqH018sVJAKltaqnMYCIj13e0PHt9nBWYfW-nOr1T35fnzKygoDDNuJmDMpco5eF0n1jImVRM0FtaBRbWxL6zlaZWK0RqM0DnWMnluTWk7gciJchhL9vyApzMPBryfZgwVDpGVBXRo9SeWksqgWYXtJCIqJE8VobiQTj2XiUtH9xzZbiLzu-v88WRvwplS0o6PFzngLNTfehPWqiEVUctomvP4rI-M74N9GE8IuPUdDWzpSFdiNSLmP7PAy1FiJhiNi4dASvP9x9h5-PMtItqA-nozdB4gSiylqYQUqDMn8FRrZzlHkqZeOzsINiKulzbDMuh6Kf1xly3zRAQ0ZoSELaMhEA748_DJdpBxZ9fFOhYCsZJ9Ztlz-BnytMLR8_WRnH1d3tg8vCUXZ-Vm_tw2vSHPUCxemHajPr3-7XVjDP_Ph7Hqv2AkR_HxuNN0DXypJ8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+identification+for+digital+image+forensics&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ding%2C+Feng&rft.au=Shi%2C+Yuxi&rft.au=Zhu%2C+Guopu&rft.au=Shi%2C+Yun-Qing&rft.date=2019-04-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=7&rft.spage=8225&rft.epage=8245&rft_id=info:doi/10.1007%2Fs11042-018-6807-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_018_6807_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |