Smoothing identification for digital image forensics

With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 78; číslo 7; s. 8225 - 8245
Hlavní autori: Ding, Feng, Shi, Yuxi, Zhu, Guopu, Shi, Yun-Qing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2019
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in recent years, people prefer to retouch images with smoothing algorithms to pursue better appearance. Hence it is required to expose such manipulations in digital image forensics. In this paper, a new scheme for detecting the operation of smoothing is proposed. The proposed scheme is based on analyzing the statistical property which can be considered as computation efficiently when compares to machine learning algorithms. Furthermore, a method for texture analysis is also proposed to specify the algorithm that used for smoothing. The second method adopt the features extracted from edge area. The features are fed into support vector machine for classification.
AbstractList With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a common image processing manipulation, smoothing is important in editing digital images for denoising and producing blur effect. Besides, in recent years, people prefer to retouch images with smoothing algorithms to pursue better appearance. Hence it is required to expose such manipulations in digital image forensics. In this paper, a new scheme for detecting the operation of smoothing is proposed. The proposed scheme is based on analyzing the statistical property which can be considered as computation efficiently when compares to machine learning algorithms. Furthermore, a method for texture analysis is also proposed to specify the algorithm that used for smoothing. The second method adopt the features extracted from edge area. The features are fed into support vector machine for classification.
Author Ding, Feng
Shi, Yun-Qing
Zhu, Guopu
Shi, Yuxi
Author_xml – sequence: 1
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology
– sequence: 2
  givenname: Yuxi
  surname: Shi
  fullname: Shi, Yuxi
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology
– sequence: 3
  givenname: Guopu
  orcidid: 0000-0001-7956-5343
  surname: Zhu
  fullname: Zhu, Guopu
  email: gp.zhu@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
– sequence: 4
  givenname: Yun-Qing
  surname: Shi
  fullname: Shi, Yun-Qing
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology
BookMark eNp9kEFLAzEQhYNUsK3-AG8LnqOTbDbZPUpRKxQ8qOcQs8ma0iY1SQ_-e7OsIAh6muEx38ybt0AzH7xB6JLANQEQN4kQYBQDaTFvQWB-guakETUWgpJZ6esWsGiAnKFFSlsAwhvK5og970PI784PleuNz846rbILvrIhVr0bXFa7yu3VYEbF-OR0OkenVu2SufiuS_R6f_eyWuPN08Pj6naDdU14xoK_MW27jjddoxS0QneMF0Wrtta16C3TfatA96rTQhndgbasV03PKIDhdb1EV9PeQwwfR5Oy3IZj9OWkpIR2ogVCWZki05SOIaVorDzEYjh-SgJyDEdO4cgSjhzDkbww4hejy6Pj3zkqt_uXpBOZyhU_mPjj6W_oC2swerk
CitedBy_id crossref_primary_10_1007_s11554_019_00907_5
crossref_primary_10_1007_s11042_022_12143_4
crossref_primary_10_1016_j_jvcir_2024_104075
crossref_primary_10_1109_TCSS_2022_3222682
crossref_primary_10_1007_s42001_024_00265_8
Cites_doi 10.1016/j.jvcir.2017.11.009
10.1109/TIP.2002.801126
10.1109/MSP.2008.931078
10.1109/TIFS.2014.2300937
10.1109/TIP.2013.2277814
10.1109/TIFS.2013.2273394
10.1016/j.image.2018.02.011
10.1109/TIFS.2006.873602
10.1016/j.jvcir.2018.01.011
10.1155/2013/518479
10.1109/TPAMI.1985.4767641
10.1016/B978-0-08-051581-6.50024-6
10.1016/j.sigpro.2018.01.011
10.1142/9789814343138_0010
10.1109/TCSVT.2018.2799243
10.1109/TIFS.2014.2381872
10.1016/0734-189X(83)90047-6
10.1007/978-3-540-30114-1_6
10.1109/LSP.2014.2359033
10.1038/scientificamerican0608-66
10.1109/WIFS.2014.7084313
10.1109/CVPR.2014.379
10.1007/s11042-017-4604-2
10.1007/11744085_44
10.1145/2909827.2930786
10.1109/83.242353
10.1109/72.788645
10.1109/ICME.2010.5583869
10.1109/TIFS.2011.2161761
10.1109/APSIPA.2017.8282150
10.1109/TIFS.2014.2312817
10.1109/ICIP.2011.6115849
10.1007/s11042-015-2759-2
10.1109/ACCESS.2013.2260814
10.1109/TIFS.2014.2359368
10.1016/j.jvcir.2018.05.020
10.1109/ICCV.1998.710815
10.1007/s11042-016-4153-0
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-018-6807-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 8245
ExternalDocumentID 10_1007_s11042_018_6807_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-76b4cf996595aa087c9464cfca83c37df4cd8a0cda9c7aec90cf4da5d4200e633
IEDL.DBID P5Z
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466381800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 22:31:27 EST 2025
Tue Nov 18 21:05:58 EST 2025
Sat Nov 29 03:26:03 EST 2025
Fri Feb 21 02:37:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Image forensics
Texture analysis
Bilateral filter
Smoothing detection
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-76b4cf996595aa087c9464cfca83c37df4cd8a0cda9c7aec90cf4da5d4200e633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7956-5343
PQID 2129780124
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_2129780124
crossref_primary_10_1007_s11042_018_6807_6
crossref_citationtrail_10_1007_s11042_018_6807_6
springer_journals_10_1007_s11042_018_6807_6
PublicationCentury 2000
PublicationDate 20190400
2019-4-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190400
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChangTKuoC-CTexture analysis and classification with tree-structured wavelet transformIEEE Trans Image Process19932442944110.1109/83.242353
FaridHDigital image forensicsSci Am20082986667110.1038/scientificamerican0608-66
Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security. ACM, pp 5–10
Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Media forensics and security II, vol 7541. International society for optics and photonics, p 754110
LeeJ-SDigital image smoothing and the sigma filterComput Vis, Graphics, Image Process1983242255269138110910.1016/0734-189X(83)90047-6
Canny J (1987) A computational approach to edge detection. In: Readings in computer vision. Elsevier, pp 184–203
Wu R, Li X, Yang B (2011) Identifying computer generated graphics via histogram features. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 1933–1936
LiJLiXYangBSunXSegmentation-based image copy-move forgery detection schemeIEEE Trans Inf Forensics Secur201510350751810.1109/TIFS.2014.2381872
Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision. Springer, pp 568–580
YangJXieJZhuGKwongSShiY-QAn effective method for detecting double jpeg compression with the same quantization matrixIEEE Trans Inf Forensics Secur20149111933194210.1109/TIFS.2014.2359368
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In 1998 6th international conference on computer vision. IEEE, pp 839–846
DruckerHWuDVapnikVNSupport vector machines for spam categorizationIEEE Trans Neural Netw19991051048105410.1109/72.788645
ZhangYQinCZhangWLiuFLuoXOn the fault-tolerant performance for a class of robust image steganographySignal Process20181469911110.1016/j.sigpro.2018.01.011
EladMOn the origin of the bilateral filter and ways to improve itIEEE Trans Image Process2002111011411151196604310.1109/TIP.2002.801126
YuanH-DBlind forensics of median filtering in digital imagesIEEE Trans Inf Forensics Secur2011641335134510.1109/TIFS.2011.2161761
DingFZhuGYangJXieJShiY-QEdge perpendicular binary coding for usm sharpening detectionIEEE Signal Process Lett201522332733110.1109/LSP.2014.2359033
Wu Y, Li X, Zhao Y, Ni R (2017) A new detector for jpeg decompressed bitmap identification. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, pp 842–845
HuRLiXGuoZDecorrelated local binary patterns for efficient texture classificationMultimed Tools Appl20187766863688210.1007/s11042-017-4604-2
LuoXSongXLiXZhangWLuJYangCLiuFSteganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codesMultimed Tools and Appl20167521135571358310.1007/s11042-015-2759-2
StammMCWuMLiuKRInformation forensics: an overview of the first decadeIEEE Access2013116720010.1109/ACCESS.2013.2260814
Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: 2010 IEEE international conference on multimedia and expo (ICME). IEEE, pp 89–94
LiBHeJHuangJShiY-QA survey on image steganography and steganalysisJournal of Information Hiding and Multimedia Signal Processing201122142172
CaoGZhaoYNiREdge-based blur metric for tamper detectionJournal of Information Hiding and Multimedia Signal Processing2010112027
LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inf Forensics Secur20061220521410.1109/TIFS.2006.873602
Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2965–2972
WangJLiTShiY-QLianSYeJForensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphicsMultimed Tools Appl20177622237212373710.1007/s11042-016-4153-0
Pasquini C, Boato G, Perez-Gonzalez F (2014) Multiple jpeg compression detection by means of benford-fourier coefficients. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 113–118
Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. In: Storage and retrieval methods and applications for multimedia 2004, vol 5307, International Society for Optics and Photonics, pp 472–481
GonzalezRCWoodsREDigital image processing20022nd edn.Upper Saddle RiverPrentice-Hall
Tuceryan M, Jain AK (1993) Texture analysis. In Handbook of pattern recognition and computer vision. World Scientific, pp 235–276
ChenCNiJHuangJBlind detection of median filtering in digital images: a difference domain based approachIEEE Trans Image Process2013221246994710311869710.1109/TIP.2013.2277814
DingFZhuGDongWShiY-QAn efficient weak sharpening detection method for image forensicsJ Vis Commun Image Represent201850939910.1016/j.jvcir.2017.11.009
TangHNiRZhaoYLiXMedian filtering detection of small-size image based on cnnJ Vis Commun Image Represent20185116216810.1016/j.jvcir.2018.01.011
WangPLiuFYangCLuoXParameter estimation of image gamma transformation based on zero-value histogram bin locationsSignal Process Image Commun201864334510.1016/j.image.2018.02.011
Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop. Citeseer
Wang P, Liu F, Yang C, Luo X (2018) Blind forensics of image gamma transformation and its application in splicing detection. Journal of Visual Communication and Image Representation
Fridrich J (2004) Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: International workshop on information hiding. Springer, pp 67–81
HaddockLJKimDYMukaiSSimple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyesJ Ophthalmol20132013510.1155/2013/518479
KangXStammMCPengALiuKRRobust median filtering forensics using an autoregressive modelIEEE Trans Inf Forensics Secur2013891456146810.1109/TIFS.2013.2273394
CaoGZhaoYNiRLiXContrast enhancement-based forensics in digital imagesIEEE Trans Inf Forensics Secur20149351552510.1109/TIFS.2014.2300937
FridrichJDigital image forensicsIEEE Signal Process Mag2009262263710.1109/MSP.2008.931078
GuoLNiJShiYQUniform embedding for efficient jpeg steganographyIEEE Trans Inf Forensics Secur20149581482510.1109/TIFS.2014.2312817
KuanDTSawchukAAStrandTCChavelPAdaptive noise smoothing filter for images with signal-dependent noiseIEEE Trans Pattern Anal Mach Intell1985216517710.1109/TPAMI.1985.4767641
Ma Y, Luo X, Li X, Bao Z, Zhang Y Selection of rich model steganalysis features based on decision rough set α-positive region reduction, IEEE Transactions on Circuits and Systems for Video Technology, In press. https://doi.org/10.1109/TCSVT.2018.2799243
Idaho N, et al. (2012) The plants database. In: NRCS, national plant data team. Citeseer
J Fridrich (6807_CR14) 2009; 26
X Luo (6807_CR28) 2016; 75
J Li (6807_CR26) 2015; 10
LJ Haddock (6807_CR18) 2013; 2013
MC Stamm (6807_CR34) 2013; 1
RC Gonzalez (6807_CR16) 2002
L Guo (6807_CR17) 2014; 9
6807_CR31
X Kang (6807_CR21) 2013; 8
6807_CR30
6807_CR1
6807_CR33
H Tang (6807_CR35) 2018; 51
6807_CR2
6807_CR32
6807_CR13
6807_CR4
6807_CR15
6807_CR37
J Lukas (6807_CR27) 2006; 1
6807_CR36
M Elad (6807_CR11) 2002; 11
6807_CR39
R Hu (6807_CR19) 2018; 77
H Drucker (6807_CR10) 1999; 10
T Chang (6807_CR6) 1993; 2
B Li (6807_CR25) 2011; 2
J-S Lee (6807_CR24) 1983; 24
J Yang (6807_CR43) 2014; 9
H Farid (6807_CR12) 2008; 298
G Cao (6807_CR3) 2010; 1
DT Kuan (6807_CR23) 1985; 2
F Ding (6807_CR8) 2015; 22
6807_CR20
6807_CR42
6807_CR41
6807_CR22
J Wang (6807_CR38) 2017; 76
Y Zhang (6807_CR45) 2018; 146
G Cao (6807_CR5) 2014; 9
P Wang (6807_CR40) 2018; 64
C Chen (6807_CR7) 2013; 22
H-D Yuan (6807_CR44) 2011; 6
6807_CR29
F Ding (6807_CR9) 2018; 50
References_xml – reference: GonzalezRCWoodsREDigital image processing20022nd edn.Upper Saddle RiverPrentice-Hall
– reference: YuanH-DBlind forensics of median filtering in digital imagesIEEE Trans Inf Forensics Secur2011641335134510.1109/TIFS.2011.2161761
– reference: FridrichJDigital image forensicsIEEE Signal Process Mag2009262263710.1109/MSP.2008.931078
– reference: ZhangYQinCZhangWLiuFLuoXOn the fault-tolerant performance for a class of robust image steganographySignal Process20181469911110.1016/j.sigpro.2018.01.011
– reference: ChangTKuoC-CTexture analysis and classification with tree-structured wavelet transformIEEE Trans Image Process19932442944110.1109/83.242353
– reference: DruckerHWuDVapnikVNSupport vector machines for spam categorizationIEEE Trans Neural Netw19991051048105410.1109/72.788645
– reference: Wu Y, Li X, Zhao Y, Ni R (2017) A new detector for jpeg decompressed bitmap identification. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, pp 842–845
– reference: HuRLiXGuoZDecorrelated local binary patterns for efficient texture classificationMultimed Tools Appl20187766863688210.1007/s11042-017-4604-2
– reference: KangXStammMCPengALiuKRRobust median filtering forensics using an autoregressive modelIEEE Trans Inf Forensics Secur2013891456146810.1109/TIFS.2013.2273394
– reference: Pasquini C, Boato G, Perez-Gonzalez F (2014) Multiple jpeg compression detection by means of benford-fourier coefficients. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE, pp 113–118
– reference: Wu R, Li X, Yang B (2011) Identifying computer generated graphics via histogram features. In: 2011 18th IEEE international conference on image processing (ICIP). IEEE, pp 1933–1936
– reference: KuanDTSawchukAAStrandTCChavelPAdaptive noise smoothing filter for images with signal-dependent noiseIEEE Trans Pattern Anal Mach Intell1985216517710.1109/TPAMI.1985.4767641
– reference: Idaho N, et al. (2012) The plants database. In: NRCS, national plant data team. Citeseer
– reference: Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Media forensics and security II, vol 7541. International society for optics and photonics, p 754110
– reference: Bayar B, Stamm MC (2016) A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security. ACM, pp 5–10
– reference: Ma Y, Luo X, Li X, Bao Z, Zhang Y Selection of rich model steganalysis features based on decision rough set α-positive region reduction, IEEE Transactions on Circuits and Systems for Video Technology, In press. https://doi.org/10.1109/TCSVT.2018.2799243
– reference: YangJXieJZhuGKwongSShiY-QAn effective method for detecting double jpeg compression with the same quantization matrixIEEE Trans Inf Forensics Secur20149111933194210.1109/TIFS.2014.2359368
– reference: DingFZhuGDongWShiY-QAn efficient weak sharpening detection method for image forensicsJ Vis Commun Image Represent201850939910.1016/j.jvcir.2017.11.009
– reference: Wang P, Liu F, Yang C, Luo X (2018) Blind forensics of image gamma transformation and its application in splicing detection. Journal of Visual Communication and Image Representation
– reference: Canny J (1987) A computational approach to edge detection. In: Readings in computer vision. Elsevier, pp 184–203
– reference: EladMOn the origin of the bilateral filter and ways to improve itIEEE Trans Image Process2002111011411151196604310.1109/TIP.2002.801126
– reference: LuoXSongXLiXZhangWLuJYangCLiuFSteganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codesMultimed Tools and Appl20167521135571358310.1007/s11042-015-2759-2
– reference: FaridHDigital image forensicsSci Am20082986667110.1038/scientificamerican0608-66
– reference: ChenCNiJHuangJBlind detection of median filtering in digital images: a difference domain based approachIEEE Trans Image Process2013221246994710311869710.1109/TIP.2013.2277814
– reference: HaddockLJKimDYMukaiSSimple, inexpensive technique for high-quality smartphone fundus photography in human and animal eyesJ Ophthalmol20132013510.1155/2013/518479
– reference: Shi J, Xu L, Jia J (2014) Discriminative blur detection features. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 2965–2972
– reference: Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: 2010 IEEE international conference on multimedia and expo (ICME). IEEE, pp 89–94
– reference: LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inf Forensics Secur20061220521410.1109/TIFS.2006.873602
– reference: WangPLiuFYangCLuoXParameter estimation of image gamma transformation based on zero-value histogram bin locationsSignal Process Image Commun201864334510.1016/j.image.2018.02.011
– reference: DingFZhuGYangJXieJShiY-QEdge perpendicular binary coding for usm sharpening detectionIEEE Signal Process Lett201522332733110.1109/LSP.2014.2359033
– reference: WangJLiTShiY-QLianSYeJForensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphicsMultimed Tools Appl20177622237212373710.1007/s11042-016-4153-0
– reference: CaoGZhaoYNiRLiXContrast enhancement-based forensics in digital imagesIEEE Trans Inf Forensics Secur20149351552510.1109/TIFS.2014.2300937
– reference: Fridrich J (2004) Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: International workshop on information hiding. Springer, pp 67–81
– reference: TangHNiRZhaoYLiXMedian filtering detection of small-size image based on cnnJ Vis Commun Image Represent20185116216810.1016/j.jvcir.2018.01.011
– reference: LeeJ-SDigital image smoothing and the sigma filterComput Vis, Graphics, Image Process1983242255269138110910.1016/0734-189X(83)90047-6
– reference: Tuceryan M, Jain AK (1993) Texture analysis. In Handbook of pattern recognition and computer vision. World Scientific, pp 235–276
– reference: Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In 1998 6th international conference on computer vision. IEEE, pp 839–846
– reference: LiJLiXYangBSunXSegmentation-based image copy-move forgery detection schemeIEEE Trans Inf Forensics Secur201510350751810.1109/TIFS.2014.2381872
– reference: Paris S, Durand F (2006) A fast approximation of the bilateral filter using a signal processing approach. In: European conference on computer vision. Springer, pp 568–580
– reference: CaoGZhaoYNiREdge-based blur metric for tamper detectionJournal of Information Hiding and Multimedia Signal Processing2010112027
– reference: LiBHeJHuangJShiY-QA survey on image steganography and steganalysisJournal of Information Hiding and Multimedia Signal Processing201122142172
– reference: Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. In: Storage and retrieval methods and applications for multimedia 2004, vol 5307, International Society for Optics and Photonics, pp 472–481
– reference: StammMCWuMLiuKRInformation forensics: an overview of the first decadeIEEE Access2013116720010.1109/ACCESS.2013.2260814
– reference: Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop. Citeseer
– reference: GuoLNiJShiYQUniform embedding for efficient jpeg steganographyIEEE Trans Inf Forensics Secur20149581482510.1109/TIFS.2014.2312817
– volume: 50
  start-page: 93
  year: 2018
  ident: 6807_CR9
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2017.11.009
– volume: 11
  start-page: 1141
  issue: 10
  year: 2002
  ident: 6807_CR11
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2002.801126
– volume: 26
  start-page: 26
  issue: 2
  year: 2009
  ident: 6807_CR14
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.931078
– volume: 9
  start-page: 515
  issue: 3
  year: 2014
  ident: 6807_CR5
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2014.2300937
– volume: 22
  start-page: 4699
  issue: 12
  year: 2013
  ident: 6807_CR7
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2277814
– volume: 8
  start-page: 1456
  issue: 9
  year: 2013
  ident: 6807_CR21
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2013.2273394
– volume: 64
  start-page: 33
  year: 2018
  ident: 6807_CR40
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2018.02.011
– volume: 1
  start-page: 205
  issue: 2
  year: 2006
  ident: 6807_CR27
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2006.873602
– volume: 51
  start-page: 162
  year: 2018
  ident: 6807_CR35
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2018.01.011
– volume: 2013
  start-page: 5
  year: 2013
  ident: 6807_CR18
  publication-title: J Ophthalmol
  doi: 10.1155/2013/518479
– ident: 6807_CR15
– volume: 2
  start-page: 165
  year: 1985
  ident: 6807_CR23
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1985.4767641
– ident: 6807_CR32
– ident: 6807_CR2
  doi: 10.1016/B978-0-08-051581-6.50024-6
– volume: 146
  start-page: 99
  year: 2018
  ident: 6807_CR45
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.01.011
– ident: 6807_CR37
  doi: 10.1142/9789814343138_0010
– ident: 6807_CR29
  doi: 10.1109/TCSVT.2018.2799243
– volume: 10
  start-page: 507
  issue: 3
  year: 2015
  ident: 6807_CR26
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2014.2381872
– ident: 6807_CR20
– volume: 24
  start-page: 255
  issue: 2
  year: 1983
  ident: 6807_CR24
  publication-title: Comput Vis, Graphics, Image Process
  doi: 10.1016/0734-189X(83)90047-6
– volume: 2
  start-page: 142
  issue: 2
  year: 2011
  ident: 6807_CR25
  publication-title: Journal of Information Hiding and Multimedia Signal Processing
– ident: 6807_CR13
  doi: 10.1007/978-3-540-30114-1_6
– ident: 6807_CR22
– volume: 22
  start-page: 327
  issue: 3
  year: 2015
  ident: 6807_CR8
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2359033
– volume: 298
  start-page: 66
  issue: 6
  year: 2008
  ident: 6807_CR12
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0608-66
– ident: 6807_CR31
  doi: 10.1109/WIFS.2014.7084313
– ident: 6807_CR33
  doi: 10.1109/CVPR.2014.379
– volume: 77
  start-page: 6863
  issue: 6
  year: 2018
  ident: 6807_CR19
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4604-2
– ident: 6807_CR30
  doi: 10.1007/11744085_44
– ident: 6807_CR1
  doi: 10.1145/2909827.2930786
– volume: 2
  start-page: 429
  issue: 4
  year: 1993
  ident: 6807_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.242353
– volume: 10
  start-page: 1048
  issue: 5
  year: 1999
  ident: 6807_CR10
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788645
– ident: 6807_CR4
  doi: 10.1109/ICME.2010.5583869
– volume: 6
  start-page: 1335
  issue: 4
  year: 2011
  ident: 6807_CR44
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2011.2161761
– volume: 1
  start-page: 20
  issue: 1
  year: 2010
  ident: 6807_CR3
  publication-title: Journal of Information Hiding and Multimedia Signal Processing
– volume-title: Digital image processing
  year: 2002
  ident: 6807_CR16
– ident: 6807_CR42
  doi: 10.1109/APSIPA.2017.8282150
– volume: 9
  start-page: 814
  issue: 5
  year: 2014
  ident: 6807_CR17
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2014.2312817
– ident: 6807_CR41
  doi: 10.1109/ICIP.2011.6115849
– volume: 75
  start-page: 13557
  issue: 21
  year: 2016
  ident: 6807_CR28
  publication-title: Multimed Tools and Appl
  doi: 10.1007/s11042-015-2759-2
– volume: 1
  start-page: 167
  year: 2013
  ident: 6807_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2013.2260814
– volume: 9
  start-page: 1933
  issue: 11
  year: 2014
  ident: 6807_CR43
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2014.2359368
– ident: 6807_CR39
  doi: 10.1016/j.jvcir.2018.05.020
– ident: 6807_CR36
  doi: 10.1109/ICCV.1998.710815
– volume: 76
  start-page: 23721
  issue: 22
  year: 2017
  ident: 6807_CR38
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-4153-0
SSID ssj0016524
Score 2.239794
Snippet With the explosive development in digital techniques, ordinary people without professional training are capable to edit digital images with applications. As a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8225
SubjectTerms Algorithms
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Digital photography
Digital techniques
Feature extraction
Forensic sciences
Image manipulation
Image processing
Image processing systems
Machine learning
Multimedia Information Systems
Noise reduction
Smoothing
Special Purpose and Application-Based Systems
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfidEoffFICrU3z8Sji8EGGOJW9lfSSSMFtsk7_fpOutSoq6FtJk0u5y-Wu3N3vAI6ZpcaGVBGqEkkoEyHJ7JklNrNKCtSZkWWh8DUfDMRoJG-qOu6iznavQ5LlTd0Uu0W-lCSMBHEUOWHLsOKsHfd5fLfDh_fQAUuqTrZuW2cOozqU-R2Jz8ao8TC_BEVLW9Nv_-srN2Gjci2D88VZ2IIlM-lAu27bEFRa3IH1DxiE20CH46mTlnsOcl2lDpXSCpw7G-j80XcVCfKxu3f8iM93x2IH7vuXdxdXpGqlQDCO2JxwllG0skQPVCoUHCVlbgSViDHm2lLUQoWolUSuDMoQLdUq0dRpkWFxvAutyXRi9iCINCYomWYo0MPXC1Q8zpBlieXG_f11Iax5mmKFM-7bXTylDUKy51HqeJR6HqWsCyfvS54XIBu_Te7VgkorfStSZ4A9lJJzVrpwWgumef0jsf0_zT6ANecvyUXiTg9a89mLOYRVfJ3nxeyoPIZvWufXVw
  priority: 102
  providerName: Springer Nature
Title Smoothing identification for digital image forensics
URI https://link.springer.com/article/10.1007/s11042-018-6807-6
https://www.proquest.com/docview/2129780124
Volume 78
WOSCitedRecordID wos000466381800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iLYftsMFgWlmpcuAEskgWxx8nxKpNk2Bd1fJRuETOc4wq0Q_ajr-f59RpAWm97GIlTmJZ-cV-L37Pvx_AK-F46WJuGDeZZlyomBXu3DFXOKMV2qLU1Ubhj7LXU6OR7ocFt2VIq6znxGqitjP0a-RvaYr1ZDlkjt7NfzGvGuWjq0FCYw-aniXBSzf0s--bKILIgqgt9YAsY1JHNautc4nfmBInilH_JBP_2qWts_lffLQyO1dHD-3wEzgMDmf0fv2FPIVH5fQYjmoxhyiM7WM4-IuZ8Bnw4WRGGNJxNLYhoajCMCInN7LjH15rJBpPaDbyNT4LHpfP4fPV5afuNQsCCwzTRKyYFAVHpytOQWNiJVFzQTVoVIqptI6jVSZGazRKU6KO0XFrMstpbJUiTU-gMZ1Ny1OIEosZamEFKvSk9gqNTAsUReZkSf-ELYjr15tjYB_3Ihg_8y1vskckJ0Ryj0guWvB688h8Tb2x6-Z2jUIeRuEy30LQgjc1jtvL9zb2YndjZ7BPbpNe5--0obFa3JUv4TH-Xo2Xiw7sya_fOtC8uOz1B3T2QTIqb-KuL89vO9UnSuVg-OUPRxnoSw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqAQcoLzE8syBXkBWk43jx6GqKgoC7bKqBEjcUmdso5XYXWAXEH-K39hxNmHbSuXGobfISSzF82Vm7Hl8AHvCc-djbhg3mWZcqJgVvumZL7zRCm3hdFko3Jadjrq60j-m4KWuhQlplbVOLBW1HWA4I_9MKjY0yyFz9PX2jgXWqBBdrSk0xrBouecn2rINv5x-J_l-ajaPjy4OT1jFKsAwTcSISVFw9LpspGdMrCRqLmgEjUoxldZztMrEaI1GaRzqGD23JrOcAOVEOAAllT_DUyVCCllLsteohcgqEl36YrLESR1FLUv1klAIEyeK0XpIJv60gxPn9q94bGnmjhf_twX6CAuVQx19G_8BSzDl-suwWJNVRJXuWob53zovrgA_7w0Io3QddW2VMFViNCInPrLd68ClEnV7pG3DSMjyx-EqXL7Ll6zBdH_Qd-sQJRYz1MIKVBia9is0Mi1QFJmXjva8DYhrceZYdVcPJB83-aQvdEBATgjIAwJy0YD911dux61F3np4q5Z6XmmZYT4ReQMOatxMbv9zso23J9uF2ZOLs3bePu20NmGOXEQ9zlXagunR_YPbhg_4OOoO73dK-Efw873h9AscA0E3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LaxsxEB6MG0p7aNK0oW5ee2gvLcK7tlaPQwghjklwMIG24NtWO5KCIX40dhvy1_LrMlrvxk0hvuXQ26LdFUj69M1I8wL4JDx3PuaGcZNqxoWKWe5bnvncG63Q5k4XgcLnst9Xg4G-qMFdFQsT3CorTiyI2k4w3JE3iWJDshwSR01fukVcdLqH018sVJAKltaqnMYCIj13e0PHt9nBWYfW-nOr1T35fnzKygoDDNuJmDMpco5eF0n1jImVRM0FtaBRbWxL6zlaZWK0RqM0DnWMnluTWk7gciJchhL9vyApzMPBryfZgwVDpGVBXRo9SeWksqgWYXtJCIqJE8VobiQTj2XiUtH9xzZbiLzu-v88WRvwplS0o6PFzngLNTfehPWqiEVUctomvP4rI-M74N9GE8IuPUdDWzpSFdiNSLmP7PAy1FiJhiNi4dASvP9x9h5-PMtItqA-nozdB4gSiylqYQUqDMn8FRrZzlHkqZeOzsINiKulzbDMuh6Kf1xly3zRAQ0ZoSELaMhEA748_DJdpBxZ9fFOhYCsZJ9Ztlz-BnytMLR8_WRnH1d3tg8vCUXZ-Vm_tw2vSHPUCxemHajPr3-7XVjDP_Ph7Hqv2AkR_HxuNN0DXypJ8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+identification+for+digital+image+forensics&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ding%2C+Feng&rft.au=Shi%2C+Yuxi&rft.au=Zhu%2C+Guopu&rft.au=Shi%2C+Yun-Qing&rft.date=2019-04-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=7&rft.spage=8225&rft.epage=8245&rft_id=info:doi/10.1007%2Fs11042-018-6807-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_018_6807_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon