I/O efficient ECC graph decomposition via graph reduction
The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k - ECC s of a graph G for all possible k values. ECC decom...
Gespeichert in:
| Veröffentlicht in: | The VLDB journal Jg. 26; H. 2; S. 275 - 300 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1066-8888, 0949-877X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The problem of computing
k
-edge connected components (
k
-
ECC
s) of a graph
G
for a specific
k
is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of
ECC
decomposition, which computes the
k
-
ECC
s of a graph
G
for all possible
k
values.
ECC
decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for
ECC
decomposition is to apply the existing
k
-
ECC
computation algorithm to compute the
k
-
ECC
s for all
k
values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing
k
-
ECC
computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible
k
values can be very large, resulting in a high computational cost when each
k
value is independently considered. In this paper, we address the above challenges, and study I/O efficient
ECC
decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific
k
. We also propose three novel I/O efficient algorithms,
Bottom
-
Up
,
Top
-
Down
, and
Hybrid
, that explore the
k
values in different orders to reduce the redundant computations between different
k
values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient. |
|---|---|
| AbstractList | The problem of computing k-edge connected components (k- ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k- ECC s of a graph G for all possible k values. ECC decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC decomposition is to apply the existing k- ECC computation algorithm to compute the k- ECC s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k- ECC computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k. We also propose three novel I/O efficient algorithms, Bottom - Up , Top - Down , and Hybrid , that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient. The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k - ECC s of a graph G for all possible k values. ECC decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC decomposition is to apply the existing k - ECC computation algorithm to compute the k - ECC s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k - ECC computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k . We also propose three novel I/O efficient algorithms, Bottom - Up , Top - Down , and Hybrid , that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient. |
| Author | Zhang, Wenjie Yuan, Long Qin, Lu Chang, Lijun Lin, Xuemin |
| Author_xml | – sequence: 1 givenname: Long surname: Yuan fullname: Yuan, Long organization: The University of New South Wales – sequence: 2 givenname: Lu surname: Qin fullname: Qin, Lu email: lu.qin@uts.edu.au organization: Centre for QCIS, University of Technology – sequence: 3 givenname: Xuemin surname: Lin fullname: Lin, Xuemin organization: The University of New South Wales – sequence: 4 givenname: Lijun surname: Chang fullname: Chang, Lijun organization: The University of New South Wales – sequence: 5 givenname: Wenjie surname: Zhang fullname: Zhang, Wenjie organization: The University of New South Wales |
| BookMark | eNp9kFFLwzAQx4NMsJt-AN8KPsddmqRJH6VMHQz2ouBbSJp0ZmxtTTrBb29L9yCC3sMdHPe7_91_jmZN2ziEbgncEwCxjEMSEgPJMTBOMLtACRSswFKItxlKCOQ5lkNcoXmMewDIsownqFgvt6mra1951_TpqizTXdDde2pd1R67Nvret0366fW5H5w9VWPvGl3W-hDdzbku0Ovj6qV8xpvt07p82OCKkrzHgjlLMuLA0MIYyomkNgcrrOWUW51LU2liDXG1NoWlhQST1ZwVtRU5NyajC3Q37e1C-3FysVf79hSaQVIRKUEwzug4RaapKrQxBlerLvijDl-KgBodUpNDanBIjQ4pNjDiF1P5Xo-_9UH7w79kNpFxUGl2Lvy46U_oG955e3E |
| CitedBy_id | crossref_primary_10_1007_s00778_020_00606_9 crossref_primary_10_1016_j_compeleceng_2020_106635 crossref_primary_10_1007_s11390_022_2367_3 crossref_primary_10_1145_3709687 crossref_primary_10_1007_s00778_023_00797_x crossref_primary_10_14778_3748191_3748210 crossref_primary_10_1109_TKDE_2024_3389989 crossref_primary_10_14778_3717755_3717771 crossref_primary_10_1007_s00778_022_00763_z crossref_primary_10_1109_TKDE_2017_2783933 |
| Cites_doi | 10.1145/1081870.1081908 10.3934/nhm.2008.3.371 10.14778/2311906.2311909 10.1007/BF02289199 10.1002/net.20046 10.1007/BF02289146 10.1145/2723372.2723740 10.1145/2463676.2465323 10.1145/2505515.2505751 10.1007/BF01758778 10.1016/S0304-3975(98)00091-7 10.1093/bioinformatics/btl370 10.1109/TVCG.2008.151 10.1145/775152.775227 10.1145/2463676.2463704 10.1073/pnas.2032324100 10.1109/ICDE.2011.5767911 10.1007/3-540-45995-2_51 10.1145/2339530.2339724 10.1007/s00778-015-0408-z 10.1145/2247596.2247652 10.1016/S0020-0190(00)00142-3 10.1016/0378-8733(83)90028-X 10.1145/1081870.1081898 10.1111/0081-1750.00098 10.1145/48529.48535 10.1109/ICDE.2012.35 10.1145/2463676.2463703 10.1145/2723372.2746486 10.1073/pnas.0701175104 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2017 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2017 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00778-016-0451-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0949-877X |
| EndPage | 300 |
| ExternalDocumentID | 10_1007_s00778_016_0451_4 |
| GrantInformation_xml | – fundername: ARC grantid: DP150103071; DP150102728 – fundername: ARC grantid: DE140100999; DP160101513 – fundername: NSFC grantid: NSFC61232006 – fundername: ARC grantid: DP140103578; DE150100563 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 123 1N0 1SB 2.D 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKMM AALFJ AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CCLIF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LHSKQ LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W7O WK8 YLTOR YZZ Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEFXT AEJOY AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AKRVB ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c316t-74ed121e0b39bb35183d60d7dd535da68bca1db1efab9d3980b2f549fd765bb23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396780700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-8888 |
| IngestDate | Thu Sep 25 00:55:54 EDT 2025 Sat Nov 29 03:17:17 EST 2025 Tue Nov 18 21:32:22 EST 2025 Fri Feb 21 02:37:44 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | I/O efficient algorithm Graph Edge connected component decomposition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-74ed121e0b39bb35183d60d7dd535da68bca1db1efab9d3980b2f549fd765bb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880745432 |
| PQPubID | 2043708 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_1880745432 crossref_primary_10_1007_s00778_016_0451_4 crossref_citationtrail_10_1007_s00778_016_0451_4 springer_journals_10_1007_s00778_016_0451_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-01 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: New York |
| PublicationSubtitle | The International Journal on Very Large Data Bases |
| PublicationTitle | The VLDB journal |
| PublicationTitleAbbrev | The VLDB Journal |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Hu, X., Tao, Y., Chung, C.: Massive graph triangulation. In: Proceedings of the SIGMOD, pp. 325–336 (2013) LuceRDConnectivity and generalized cliques in sociometric group structurePsychometrika19501521691903597510.1007/BF02289199 Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: Proceedings of the ICDE, pp. 1049–1060 (2012) Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y.: Mining newsgroups using networks arising from social behavior. In: Proceedings of WWW, pp. 529–535 (2003) Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing SCCs in massive graphs. In Proceedings of the SIGMOD, pp. 245–270 (2013) ChenJYuanBDetecting functional modules in the yeast protein-protein interaction networkBioinformatics200622182283229010.1093/bioinformatics/btl370 Alvarez-HamelinJIDall’AstaLBarratAVespignaniAK-core decomposition of internet graphs: hierarchies, self-similarity and measurement biasesNetw. Heterog. Media200832371393239523810.3934/nhm.2008.3.3711145.68470 Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012) JiaYHoberockJGarlandMHartJOn the visualization of social and other scale-free networksIEEE Trans. Vis. Comput. Graph.20081461285129210.1109/TVCG.2008.151 CarmiSHavlinSKirkpatrickSShavittYShirEA model of internet topology using k-shell decompositionProc. Natl Acad. Sci.200710427111501115410.1073/pnas.0701175104 Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Latin American Symposium on Theoretical Informatics, pp. 598–612 (2002) Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: Proceedings of the SIGKDD, pp. 228–238 (2005) Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2005) YuanLQinLLinXChangLZhangWI/O efficient ecc graph decomposition via graph reductionPVLDB201697516527 AggarwalAVitterJThe input/output complexity of sorting and related problemsCommun. ACM198831911161127102179410.1145/48529.48535 HartuvEShamirRA clustering algorithm based on graph connectivityInf. Process. Lett.2000764175181180767610.1016/S0020-0190(00)00142-30996.68525 Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: Proceedings CIKM, pp. 909–918 (2013) MagnantiTLRaghavanSStrong formulations for network design problems with connectivity requirementsNetworks20054526179211641610.1002/net.200461067.68104 MatsudaHIshiharaTHashimotoAClassifying molecular sequences using a linkage graph with their pairwise similaritiesTheor. Comput. Sci.19992102305325165545510.1016/S0304-3975(98)00091-70912.68218 Cheng, J., Ke, Y., Chu, S., Ozsu. M.T.: Efficient core decomposition in massive networks. In: Proceedings of the ICDE, pp. 51–62 (2011) Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: Proceedings of the SIGKDD, pp. 1240–1248 (2012) Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: Proceedings of the EDBT, pp. 480–491 (2012) Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: Proceedings of the SIGMOD, pp. 445–458 (2015) NagamochiHIbarakiTA linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graphAlgorithmica199271–6583596115458910.1007/BF017587780763.05065 SpirinVMirnyLAProtein complexes and functional modules in molecular networksProc. Natl. Acad. Sci.200310021121231212810.1073/pnas.2032324100 Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity constraints. In: Proceedings of the SIGKDD, pp. 324–333 (2005) Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of the SIGMOD, pp. 205–216 (2013) SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928772129510.1016/0378-8733(83)90028-X YuanLQinLLinXChangLZhangWDiversified top-k clique searchVLDB J.201625217119610.1007/s00778-015-0408-z Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: How the k-core decomposition helps in understanding the internet topology. In: ISMA Workshop on the Internet Topology, vol. 1 (2006) Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for computing Steiner components with maximum connectivity. In: Proceedings of the SIGMOD, pp. 459–474 (2015) LuceRDPerryADA method of matrix analysis of group structurePsychometrika1949142951163597410.1007/BF02289146 WangNZhangJTanKTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868 WhiteDRHararyFThe cohesiveness of blocks in social networks: node connectivity and conditional densitySociol. Methodol.200131130535910.1111/0081-1750.00098 451_CR12 451_CR34 451_CR33 451_CR10 N Wang (451_CR26) 2010; 4 451_CR32 451_CR31 TL Magnanti (451_CR19) 2005; 45 SB Seidman (451_CR23) 1983; 5 A Aggarwal (451_CR2) 1988; 31 S Carmi (451_CR8) 2007; 104 RD Luce (451_CR18) 1949; 14 H Nagamochi (451_CR21) 1992; 7 RD Luce (451_CR17) 1950; 15 451_CR28 JI Alvarez-Hamelin (451_CR7) 2008; 3 E Hartuv (451_CR14) 2000; 76 451_CR25 451_CR1 451_CR22 451_CR5 451_CR4 451_CR3 451_CR9 J Chen (451_CR11) 2006; 22 451_CR6 H Matsuda (451_CR20) 1999; 210 L Yuan (451_CR30) 2016; 9 Y Jia (451_CR16) 2008; 14 DR White (451_CR27) 2001; 31 451_CR15 V Spirin (451_CR24) 2003; 100 L Yuan (451_CR29) 2016; 25 451_CR13 |
| References_xml | – reference: Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: Proceedings of the SIGMOD, pp. 445–458 (2015) – reference: Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: Proceedings of the SIGKDD, pp. 228–238 (2005) – reference: Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Latin American Symposium on Theoretical Informatics, pp. 598–612 (2002) – reference: Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: Proceedings CIKM, pp. 909–918 (2013) – reference: Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y.: Mining newsgroups using networks arising from social behavior. In: Proceedings of WWW, pp. 529–535 (2003) – reference: WangNZhangJTanKTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868 – reference: AggarwalAVitterJThe input/output complexity of sorting and related problemsCommun. ACM198831911161127102179410.1145/48529.48535 – reference: ChenJYuanBDetecting functional modules in the yeast protein-protein interaction networkBioinformatics200622182283229010.1093/bioinformatics/btl370 – reference: Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: Proceedings of the ICDE, pp. 1049–1060 (2012) – reference: Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for computing Steiner components with maximum connectivity. In: Proceedings of the SIGMOD, pp. 459–474 (2015) – reference: YuanLQinLLinXChangLZhangWDiversified top-k clique searchVLDB J.201625217119610.1007/s00778-015-0408-z – reference: LuceRDConnectivity and generalized cliques in sociometric group structurePsychometrika19501521691903597510.1007/BF02289199 – reference: MagnantiTLRaghavanSStrong formulations for network design problems with connectivity requirementsNetworks20054526179211641610.1002/net.200461067.68104 – reference: Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012) – reference: Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing SCCs in massive graphs. In Proceedings of the SIGMOD, pp. 245–270 (2013) – reference: Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: Proceedings of the SIGKDD, pp. 1240–1248 (2012) – reference: SpirinVMirnyLAProtein complexes and functional modules in molecular networksProc. Natl. Acad. Sci.200310021121231212810.1073/pnas.2032324100 – reference: LuceRDPerryADA method of matrix analysis of group structurePsychometrika1949142951163597410.1007/BF02289146 – reference: Alvarez-HamelinJIDall’AstaLBarratAVespignaniAK-core decomposition of internet graphs: hierarchies, self-similarity and measurement biasesNetw. Heterog. Media200832371393239523810.3934/nhm.2008.3.3711145.68470 – reference: Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: Proceedings of the EDBT, pp. 480–491 (2012) – reference: JiaYHoberockJGarlandMHartJOn the visualization of social and other scale-free networksIEEE Trans. Vis. Comput. Graph.20081461285129210.1109/TVCG.2008.151 – reference: Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2005) – reference: Cheng, J., Ke, Y., Chu, S., Ozsu. M.T.: Efficient core decomposition in massive networks. In: Proceedings of the ICDE, pp. 51–62 (2011) – reference: SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928772129510.1016/0378-8733(83)90028-X – reference: NagamochiHIbarakiTA linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graphAlgorithmica199271–6583596115458910.1007/BF017587780763.05065 – reference: Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of the SIGMOD, pp. 205–216 (2013) – reference: WhiteDRHararyFThe cohesiveness of blocks in social networks: node connectivity and conditional densitySociol. Methodol.200131130535910.1111/0081-1750.00098 – reference: HartuvEShamirRA clustering algorithm based on graph connectivityInf. Process. Lett.2000764175181180767610.1016/S0020-0190(00)00142-30996.68525 – reference: Hu, X., Tao, Y., Chung, C.: Massive graph triangulation. In: Proceedings of the SIGMOD, pp. 325–336 (2013) – reference: Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity constraints. In: Proceedings of the SIGKDD, pp. 324–333 (2005) – reference: MatsudaHIshiharaTHashimotoAClassifying molecular sequences using a linkage graph with their pairwise similaritiesTheor. Comput. Sci.19992102305325165545510.1016/S0304-3975(98)00091-70912.68218 – reference: Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: How the k-core decomposition helps in understanding the internet topology. In: ISMA Workshop on the Internet Topology, vol. 1 (2006) – reference: CarmiSHavlinSKirkpatrickSShavittYShirEA model of internet topology using k-shell decompositionProc. Natl Acad. Sci.200710427111501115410.1073/pnas.0701175104 – reference: YuanLQinLLinXChangLZhangWI/O efficient ecc graph decomposition via graph reductionPVLDB201697516527 – ident: 451_CR28 doi: 10.1145/1081870.1081908 – volume: 3 start-page: 371 issue: 2 year: 2008 ident: 451_CR7 publication-title: Netw. Heterog. Media doi: 10.3934/nhm.2008.3.371 – ident: 451_CR25 doi: 10.14778/2311906.2311909 – ident: 451_CR6 – volume: 15 start-page: 169 issue: 2 year: 1950 ident: 451_CR17 publication-title: Psychometrika doi: 10.1007/BF02289199 – volume: 45 start-page: 61 issue: 2 year: 2005 ident: 451_CR19 publication-title: Networks doi: 10.1002/net.20046 – volume: 14 start-page: 95 issue: 2 year: 1949 ident: 451_CR18 publication-title: Psychometrika doi: 10.1007/BF02289146 – ident: 451_CR33 doi: 10.1145/2723372.2723740 – ident: 451_CR10 doi: 10.1145/2463676.2465323 – ident: 451_CR4 doi: 10.1145/2505515.2505751 – volume: 4 start-page: 58 issue: 2 year: 2010 ident: 451_CR26 publication-title: PVLDB – volume: 7 start-page: 583 issue: 1–6 year: 1992 ident: 451_CR21 publication-title: Algorithmica doi: 10.1007/BF01758778 – volume: 210 start-page: 305 issue: 2 year: 1999 ident: 451_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/S0304-3975(98)00091-7 – volume: 22 start-page: 2283 issue: 18 year: 2006 ident: 451_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl370 – volume: 14 start-page: 1285 issue: 6 year: 2008 ident: 451_CR16 publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2008.151 – ident: 451_CR3 doi: 10.1145/775152.775227 – ident: 451_CR15 doi: 10.1145/2463676.2463704 – volume: 100 start-page: 12123 issue: 21 year: 2003 ident: 451_CR24 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2032324100 – ident: 451_CR12 doi: 10.1109/ICDE.2011.5767911 – ident: 451_CR1 doi: 10.1007/3-540-45995-2_51 – ident: 451_CR13 doi: 10.1145/2339530.2339724 – volume: 25 start-page: 171 issue: 2 year: 2016 ident: 451_CR29 publication-title: VLDB J. doi: 10.1007/s00778-015-0408-z – ident: 451_CR34 doi: 10.1145/2247596.2247652 – volume: 76 start-page: 175 issue: 4 year: 2000 ident: 451_CR14 publication-title: Inf. Process. Lett. doi: 10.1016/S0020-0190(00)00142-3 – volume: 5 start-page: 269 issue: 3 year: 1983 ident: 451_CR23 publication-title: Soc. Netw. doi: 10.1016/0378-8733(83)90028-X – ident: 451_CR22 doi: 10.1145/1081870.1081898 – volume: 31 start-page: 305 issue: 1 year: 2001 ident: 451_CR27 publication-title: Sociol. Methodol. doi: 10.1111/0081-1750.00098 – volume: 31 start-page: 1116 issue: 9 year: 1988 ident: 451_CR2 publication-title: Commun. ACM doi: 10.1145/48529.48535 – ident: 451_CR5 – volume: 9 start-page: 516 issue: 7 year: 2016 ident: 451_CR30 publication-title: PVLDB – ident: 451_CR31 doi: 10.1109/ICDE.2012.35 – ident: 451_CR32 doi: 10.1145/2463676.2463703 – ident: 451_CR9 doi: 10.1145/2723372.2746486 – volume: 104 start-page: 11150 issue: 27 year: 2007 ident: 451_CR8 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0701175104 |
| SSID | ssj0002225 |
| Score | 2.2899423 |
| Snippet | The problem of computing
k
-edge connected components (
k
-
ECC
s) of a graph
G
for a specific
k
is a fundamental graph problem and has been investigated... The problem of computing k-edge connected components (k- ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 275 |
| SubjectTerms | Algorithms Computation Computer memory Computer Science Cost analysis Data structures Database Management Decomposition Graph theory Input output analysis Regular Paper Searching Tillage |
| Title | I/O efficient ECC graph decomposition via graph reduction |
| URI | https://link.springer.com/article/10.1007/s00778-016-0451-4 https://www.proquest.com/docview/1880745432 |
| Volume | 26 |
| WOSCitedRecordID | wos000396780700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 0949-877X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002225 issn: 1066-8888 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg6elMVuXps9SmnRSxVf9LZsHgsFaaWt_f0mabI-UEGv2Wx2mWTyZZgv3wCc5hwbLaW2nmZoQnnJEiFYlRguMi2ZwiVRvthENhiI4TC_Dfe4Z5HtHlOSfqeuL7s55RlHvLIRMGU28FmFNYt2wtVruLt_qrdfF8D4FCfn9rNCxFTmd0N8BqP3E-aXpKjHmn7zX3-5BZvhaIkul2thG1bMeAeasWwDCl68C_n1xQ0yXjrCIg7qdbvIy1YjbRzBPLC40GJUhvapk3d1bXvw2O89dK-SUEEhUSTl8ySjRqc4NR1JcikJs_6reUdnWjPCdMmFVGWqZWqqUuaaWGNKXNmIsdIZZ1Jisg-N8WRsDgBZIKPYCCdIX1GVc0ntPNpwiRhl_TrVLehEUxYqyIu7KhfPRS2M7E1TOEqZM01BW3BWv_Ky1Nb4rXM7zk8R3GxWODG5jDJKcAvO43x8ePzTYId_6n0EG9iBuefrtKExn76aY1hXi_loNj3xq-8NPQjR8A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecXp1Dz4pBTX3Jo-ytjYcE7RKXsrzaUwkCnb3O83ydp6QQV9TdO0nOTky-F8-Q7Aacyx0VJq62mGBpSnLBCCZYHhItKSKZwS5YtNRP2-GA7j2_we97RguxcpSb9Tl5fdnPKMI17ZCJgyG_gswwq1gOUE8-_uH8vt1wUwPsXJuf2sEEUq87shPoPR-wnzS1LUY027-q-_3ISN_GiJLhdrYQuWzHgbqkXZBpR78Q7E3YsbZLx0hEUc1Go2kZetRto4gnnO4kLzUZq3T5y8q2vbhYd2a9DsBHkFhUCRkM-CiBod4tA0JImlJMz6r-YNHWnNCNMpF1KloZahyVIZaxKLhsSZjRgzHXEmJSZ7UBk_j80-IAtkFBvhBOkzqmIuqZ1HGy4Ro6xfh7oGjcKUicrlxV2Vi6ekFEb2pkkcpcyZJqE1OCtfeVloa_zWuV7MT5K72TRxYnIRZZTgGpwX8_Hh8U-DHfyp9wmsdQbXvaTX7V8dwjp2wO65O3WozCav5ghW1Xw2mk6O_Up8Ax2r1NQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFaNQdPSmiyr2yOUi0WpRZ80FvIPgIFiaWN_f3uppv4QAXxutkdlpmdzA7z7TcApzFDWgmhjKdp4hOWUp9zmvma8UgJKlGKZdlsIhoM-GgUD12f01mFdq9Kkos3DZalKS86E5V16odvloXGgrBMNkyoSYKWYYVYHL1N1--f6l-xTWbKcidjZgucV2XN70R8Dkzvt80vBdIy7vSa_97xJmy4K6d3sTgjW7Ck821oVu0cPOfdOxD3O3eeLikljFzvqtv1SjprT2kLPHfoLm8-Tt341NK-2rFdeOxdPXSvfddZwZc4ZIUfEa1CFOpA4FgITI1fKxaoSCmKqUoZFzINlQh1lopY4ZgHAmUmk8xUxKgQCO9BI3_J9T54JsARpLklqs-IjJkgxr4mjcJaGn8PVQuCSq2JdLTjtvvFc1ITJpeqSSzUzKomIS04q5dMFpwbv01uV7ZKnPvNEksyFxFKMGrBeWWbD59_Enbwp9knsDa87CW3_cHNIawjG-9LSE8bGsX0VR_BqpwX49n0uDyUb40i3bg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=I%2FO+efficient+ECC+graph+decomposition+via+graph+reduction&rft.jtitle=The+VLDB+journal&rft.au=Yuan%2C+Long&rft.au=Qin%2C+Lu&rft.au=Lin%2C+Xuemin&rft.au=Chang%2C+Lijun&rft.date=2017-04-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=26&rft.issue=2&rft.spage=275&rft.epage=300&rft_id=info:doi/10.1007%2Fs00778-016-0451-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_016_0451_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon |