I/O efficient ECC graph decomposition via graph reduction

The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k - ECC s of a graph G for all possible k values. ECC decom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The VLDB journal Jg. 26; H. 2; S. 275 - 300
Hauptverfasser: Yuan, Long, Qin, Lu, Lin, Xuemin, Chang, Lijun, Zhang, Wenjie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2017
Springer Nature B.V
Schlagworte:
ISSN:1066-8888, 0949-877X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k - ECC s of a graph G for all possible k values. ECC decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC decomposition is to apply the existing k - ECC computation algorithm to compute the k - ECC s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k - ECC computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k . We also propose three novel I/O efficient algorithms, Bottom - Up , Top - Down , and Hybrid , that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient.
AbstractList The problem of computing k-edge connected components (k- ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k- ECC s of a graph G for all possible k values. ECC decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC decomposition is to apply the existing k- ECC computation algorithm to compute the k- ECC s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k- ECC computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k. We also propose three novel I/O efficient algorithms, Bottom - Up , Top - Down , and Hybrid , that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient.
The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC decomposition, which computes the k - ECC s of a graph G for all possible k values. ECC decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC decomposition is to apply the existing k - ECC computation algorithm to compute the k - ECC s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k - ECC computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k . We also propose three novel I/O efficient algorithms, Bottom - Up , Top - Down , and Hybrid , that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient.
Author Zhang, Wenjie
Yuan, Long
Qin, Lu
Chang, Lijun
Lin, Xuemin
Author_xml – sequence: 1
  givenname: Long
  surname: Yuan
  fullname: Yuan, Long
  organization: The University of New South Wales
– sequence: 2
  givenname: Lu
  surname: Qin
  fullname: Qin, Lu
  email: lu.qin@uts.edu.au
  organization: Centre for QCIS, University of Technology
– sequence: 3
  givenname: Xuemin
  surname: Lin
  fullname: Lin, Xuemin
  organization: The University of New South Wales
– sequence: 4
  givenname: Lijun
  surname: Chang
  fullname: Chang, Lijun
  organization: The University of New South Wales
– sequence: 5
  givenname: Wenjie
  surname: Zhang
  fullname: Zhang, Wenjie
  organization: The University of New South Wales
BookMark eNp9kFFLwzAQx4NMsJt-AN8KPsddmqRJH6VMHQz2ouBbSJp0ZmxtTTrBb29L9yCC3sMdHPe7_91_jmZN2ziEbgncEwCxjEMSEgPJMTBOMLtACRSswFKItxlKCOQ5lkNcoXmMewDIsownqFgvt6mra1951_TpqizTXdDde2pd1R67Nvret0366fW5H5w9VWPvGl3W-hDdzbku0Ovj6qV8xpvt07p82OCKkrzHgjlLMuLA0MIYyomkNgcrrOWUW51LU2liDXG1NoWlhQST1ZwVtRU5NyajC3Q37e1C-3FysVf79hSaQVIRKUEwzug4RaapKrQxBlerLvijDl-KgBodUpNDanBIjQ4pNjDiF1P5Xo-_9UH7w79kNpFxUGl2Lvy46U_oG955e3E
CitedBy_id crossref_primary_10_1007_s00778_020_00606_9
crossref_primary_10_1016_j_compeleceng_2020_106635
crossref_primary_10_1007_s11390_022_2367_3
crossref_primary_10_1145_3709687
crossref_primary_10_1007_s00778_023_00797_x
crossref_primary_10_14778_3748191_3748210
crossref_primary_10_1109_TKDE_2024_3389989
crossref_primary_10_14778_3717755_3717771
crossref_primary_10_1007_s00778_022_00763_z
crossref_primary_10_1109_TKDE_2017_2783933
Cites_doi 10.1145/1081870.1081908
10.3934/nhm.2008.3.371
10.14778/2311906.2311909
10.1007/BF02289199
10.1002/net.20046
10.1007/BF02289146
10.1145/2723372.2723740
10.1145/2463676.2465323
10.1145/2505515.2505751
10.1007/BF01758778
10.1016/S0304-3975(98)00091-7
10.1093/bioinformatics/btl370
10.1109/TVCG.2008.151
10.1145/775152.775227
10.1145/2463676.2463704
10.1073/pnas.2032324100
10.1109/ICDE.2011.5767911
10.1007/3-540-45995-2_51
10.1145/2339530.2339724
10.1007/s00778-015-0408-z
10.1145/2247596.2247652
10.1016/S0020-0190(00)00142-3
10.1016/0378-8733(83)90028-X
10.1145/1081870.1081898
10.1111/0081-1750.00098
10.1145/48529.48535
10.1109/ICDE.2012.35
10.1145/2463676.2463703
10.1145/2723372.2746486
10.1073/pnas.0701175104
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00778-016-0451-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 300
ExternalDocumentID 10_1007_s00778_016_0451_4
GrantInformation_xml – fundername: ARC
  grantid: DP150103071; DP150102728
– fundername: ARC
  grantid: DE140100999; DP160101513
– fundername: NSFC
  grantid: NSFC61232006
– fundername: ARC
  grantid: DP140103578; DE150100563
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c316t-74ed121e0b39bb35183d60d7dd535da68bca1db1efab9d3980b2f549fd765bb23
IEDL.DBID RSV
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396780700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Thu Sep 25 00:55:54 EDT 2025
Sat Nov 29 03:17:17 EST 2025
Tue Nov 18 21:32:22 EST 2025
Fri Feb 21 02:37:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords I/O efficient algorithm
Graph
Edge connected component decomposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-74ed121e0b39bb35183d60d7dd535da68bca1db1efab9d3980b2f549fd765bb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880745432
PQPubID 2043708
PageCount 26
ParticipantIDs proquest_journals_1880745432
crossref_primary_10_1007_s00778_016_0451_4
crossref_citationtrail_10_1007_s00778_016_0451_4
springer_journals_10_1007_s00778_016_0451_4
PublicationCentury 2000
PublicationDate 2017-04-01
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hu, X., Tao, Y., Chung, C.: Massive graph triangulation. In: Proceedings of the SIGMOD, pp. 325–336 (2013)
LuceRDConnectivity and generalized cliques in sociometric group structurePsychometrika19501521691903597510.1007/BF02289199
Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: Proceedings of the ICDE, pp. 1049–1060 (2012)
Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y.: Mining newsgroups using networks arising from social behavior. In: Proceedings of WWW, pp. 529–535 (2003)
Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing SCCs in massive graphs. In Proceedings of the SIGMOD, pp. 245–270 (2013)
ChenJYuanBDetecting functional modules in the yeast protein-protein interaction networkBioinformatics200622182283229010.1093/bioinformatics/btl370
Alvarez-HamelinJIDall’AstaLBarratAVespignaniAK-core decomposition of internet graphs: hierarchies, self-similarity and measurement biasesNetw. Heterog. Media200832371393239523810.3934/nhm.2008.3.3711145.68470
Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)
JiaYHoberockJGarlandMHartJOn the visualization of social and other scale-free networksIEEE Trans. Vis. Comput. Graph.20081461285129210.1109/TVCG.2008.151
CarmiSHavlinSKirkpatrickSShavittYShirEA model of internet topology using k-shell decompositionProc. Natl Acad. Sci.200710427111501115410.1073/pnas.0701175104
Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Latin American Symposium on Theoretical Informatics, pp. 598–612 (2002)
Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: Proceedings of the SIGKDD, pp. 228–238 (2005)
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2005)
YuanLQinLLinXChangLZhangWI/O efficient ecc graph decomposition via graph reductionPVLDB201697516527
AggarwalAVitterJThe input/output complexity of sorting and related problemsCommun. ACM198831911161127102179410.1145/48529.48535
HartuvEShamirRA clustering algorithm based on graph connectivityInf. Process. Lett.2000764175181180767610.1016/S0020-0190(00)00142-30996.68525
Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: Proceedings CIKM, pp. 909–918 (2013)
MagnantiTLRaghavanSStrong formulations for network design problems with connectivity requirementsNetworks20054526179211641610.1002/net.200461067.68104
MatsudaHIshiharaTHashimotoAClassifying molecular sequences using a linkage graph with their pairwise similaritiesTheor. Comput. Sci.19992102305325165545510.1016/S0304-3975(98)00091-70912.68218
Cheng, J., Ke, Y., Chu, S., Ozsu. M.T.: Efficient core decomposition in massive networks. In: Proceedings of the ICDE, pp. 51–62 (2011)
Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: Proceedings of the SIGKDD, pp. 1240–1248 (2012)
Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: Proceedings of the EDBT, pp. 480–491 (2012)
Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: Proceedings of the SIGMOD, pp. 445–458 (2015)
NagamochiHIbarakiTA linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graphAlgorithmica199271–6583596115458910.1007/BF017587780763.05065
SpirinVMirnyLAProtein complexes and functional modules in molecular networksProc. Natl. Acad. Sci.200310021121231212810.1073/pnas.2032324100
Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity constraints. In: Proceedings of the SIGKDD, pp. 324–333 (2005)
Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of the SIGMOD, pp. 205–216 (2013)
SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928772129510.1016/0378-8733(83)90028-X
YuanLQinLLinXChangLZhangWDiversified top-k clique searchVLDB J.201625217119610.1007/s00778-015-0408-z
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: How the k-core decomposition helps in understanding the internet topology. In: ISMA Workshop on the Internet Topology, vol. 1 (2006)
Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for computing Steiner components with maximum connectivity. In: Proceedings of the SIGMOD, pp. 459–474 (2015)
LuceRDPerryADA method of matrix analysis of group structurePsychometrika1949142951163597410.1007/BF02289146
WangNZhangJTanKTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868
WhiteDRHararyFThe cohesiveness of blocks in social networks: node connectivity and conditional densitySociol. Methodol.200131130535910.1111/0081-1750.00098
451_CR12
451_CR34
451_CR33
451_CR10
N Wang (451_CR26) 2010; 4
451_CR32
451_CR31
TL Magnanti (451_CR19) 2005; 45
SB Seidman (451_CR23) 1983; 5
A Aggarwal (451_CR2) 1988; 31
S Carmi (451_CR8) 2007; 104
RD Luce (451_CR18) 1949; 14
H Nagamochi (451_CR21) 1992; 7
RD Luce (451_CR17) 1950; 15
451_CR28
JI Alvarez-Hamelin (451_CR7) 2008; 3
E Hartuv (451_CR14) 2000; 76
451_CR25
451_CR1
451_CR22
451_CR5
451_CR4
451_CR3
451_CR9
J Chen (451_CR11) 2006; 22
451_CR6
H Matsuda (451_CR20) 1999; 210
L Yuan (451_CR30) 2016; 9
Y Jia (451_CR16) 2008; 14
DR White (451_CR27) 2001; 31
451_CR15
V Spirin (451_CR24) 2003; 100
L Yuan (451_CR29) 2016; 25
451_CR13
References_xml – reference: Zhang, Z., Yu, J.X., Qin, L., Shang, Z.: Divide & conquer: I/O efficient depth-first search. In: Proceedings of the SIGMOD, pp. 445–458 (2015)
– reference: Pei, J., Jiang, D., Zhang, A.: On mining cross-graph quasi-cliques. In: Proceedings of the SIGKDD, pp. 228–238 (2005)
– reference: Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Latin American Symposium on Theoretical Informatics, pp. 598–612 (2002)
– reference: Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: Proceedings CIKM, pp. 909–918 (2013)
– reference: Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y.: Mining newsgroups using networks arising from social behavior. In: Proceedings of WWW, pp. 529–535 (2003)
– reference: WangNZhangJTanKTungAKHOn triangulation-based dense neighborhood graphs discoveryPVLDB2010425868
– reference: AggarwalAVitterJThe input/output complexity of sorting and related problemsCommun. ACM198831911161127102179410.1145/48529.48535
– reference: ChenJYuanBDetecting functional modules in the yeast protein-protein interaction networkBioinformatics200622182283229010.1093/bioinformatics/btl370
– reference: Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core motifs within networks. In: Proceedings of the ICDE, pp. 1049–1060 (2012)
– reference: Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based optimal algorithms for computing Steiner components with maximum connectivity. In: Proceedings of the SIGMOD, pp. 459–474 (2015)
– reference: YuanLQinLLinXChangLZhangWDiversified top-k clique searchVLDB J.201625217119610.1007/s00778-015-0408-z
– reference: LuceRDConnectivity and generalized cliques in sociometric group structurePsychometrika19501521691903597510.1007/BF02289199
– reference: MagnantiTLRaghavanSStrong formulations for network design problems with connectivity requirementsNetworks20054526179211641610.1002/net.200461067.68104
– reference: Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)
– reference: Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing SCCs in massive graphs. In Proceedings of the SIGMOD, pp. 245–270 (2013)
– reference: Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory. In: Proceedings of the SIGKDD, pp. 1240–1248 (2012)
– reference: SpirinVMirnyLAProtein complexes and functional modules in molecular networksProc. Natl. Acad. Sci.200310021121231212810.1073/pnas.2032324100
– reference: LuceRDPerryADA method of matrix analysis of group structurePsychometrika1949142951163597410.1007/BF02289146
– reference: Alvarez-HamelinJIDall’AstaLBarratAVespignaniAK-core decomposition of internet graphs: hierarchies, self-similarity and measurement biasesNetw. Heterog. Media200832371393239523810.3934/nhm.2008.3.3711145.68470
– reference: Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: Proceedings of the EDBT, pp. 480–491 (2012)
– reference: JiaYHoberockJGarlandMHartJOn the visualization of social and other scale-free networksIEEE Trans. Vis. Comput. Graph.20081461285129210.1109/TVCG.2008.151
– reference: Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in Neural Information Processing Systems, pp. 41–50 (2005)
– reference: Cheng, J., Ke, Y., Chu, S., Ozsu. M.T.: Efficient core decomposition in massive networks. In: Proceedings of the ICDE, pp. 51–62 (2011)
– reference: SeidmanSBNetwork structure and minimum degreeSoc. Netw.19835326928772129510.1016/0378-8733(83)90028-X
– reference: NagamochiHIbarakiTA linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graphAlgorithmica199271–6583596115458910.1007/BF017587780763.05065
– reference: Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: Proceedings of the SIGMOD, pp. 205–216 (2013)
– reference: WhiteDRHararyFThe cohesiveness of blocks in social networks: node connectivity and conditional densitySociol. Methodol.200131130535910.1111/0081-1750.00098
– reference: HartuvEShamirRA clustering algorithm based on graph connectivityInf. Process. Lett.2000764175181180767610.1016/S0020-0190(00)00142-30996.68525
– reference: Hu, X., Tao, Y., Chung, C.: Massive graph triangulation. In: Proceedings of the SIGMOD, pp. 325–336 (2013)
– reference: Yan, X., Zhou, X., Han, J.: Mining closed relational graphs with connectivity constraints. In: Proceedings of the SIGKDD, pp. 324–333 (2005)
– reference: MatsudaHIshiharaTHashimotoAClassifying molecular sequences using a linkage graph with their pairwise similaritiesTheor. Comput. Sci.19992102305325165545510.1016/S0304-3975(98)00091-70912.68218
– reference: Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: How the k-core decomposition helps in understanding the internet topology. In: ISMA Workshop on the Internet Topology, vol. 1 (2006)
– reference: CarmiSHavlinSKirkpatrickSShavittYShirEA model of internet topology using k-shell decompositionProc. Natl Acad. Sci.200710427111501115410.1073/pnas.0701175104
– reference: YuanLQinLLinXChangLZhangWI/O efficient ecc graph decomposition via graph reductionPVLDB201697516527
– ident: 451_CR28
  doi: 10.1145/1081870.1081908
– volume: 3
  start-page: 371
  issue: 2
  year: 2008
  ident: 451_CR7
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2008.3.371
– ident: 451_CR25
  doi: 10.14778/2311906.2311909
– ident: 451_CR6
– volume: 15
  start-page: 169
  issue: 2
  year: 1950
  ident: 451_CR17
  publication-title: Psychometrika
  doi: 10.1007/BF02289199
– volume: 45
  start-page: 61
  issue: 2
  year: 2005
  ident: 451_CR19
  publication-title: Networks
  doi: 10.1002/net.20046
– volume: 14
  start-page: 95
  issue: 2
  year: 1949
  ident: 451_CR18
  publication-title: Psychometrika
  doi: 10.1007/BF02289146
– ident: 451_CR33
  doi: 10.1145/2723372.2723740
– ident: 451_CR10
  doi: 10.1145/2463676.2465323
– ident: 451_CR4
  doi: 10.1145/2505515.2505751
– volume: 4
  start-page: 58
  issue: 2
  year: 2010
  ident: 451_CR26
  publication-title: PVLDB
– volume: 7
  start-page: 583
  issue: 1–6
  year: 1992
  ident: 451_CR21
  publication-title: Algorithmica
  doi: 10.1007/BF01758778
– volume: 210
  start-page: 305
  issue: 2
  year: 1999
  ident: 451_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00091-7
– volume: 22
  start-page: 2283
  issue: 18
  year: 2006
  ident: 451_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl370
– volume: 14
  start-page: 1285
  issue: 6
  year: 2008
  ident: 451_CR16
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2008.151
– ident: 451_CR3
  doi: 10.1145/775152.775227
– ident: 451_CR15
  doi: 10.1145/2463676.2463704
– volume: 100
  start-page: 12123
  issue: 21
  year: 2003
  ident: 451_CR24
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2032324100
– ident: 451_CR12
  doi: 10.1109/ICDE.2011.5767911
– ident: 451_CR1
  doi: 10.1007/3-540-45995-2_51
– ident: 451_CR13
  doi: 10.1145/2339530.2339724
– volume: 25
  start-page: 171
  issue: 2
  year: 2016
  ident: 451_CR29
  publication-title: VLDB J.
  doi: 10.1007/s00778-015-0408-z
– ident: 451_CR34
  doi: 10.1145/2247596.2247652
– volume: 76
  start-page: 175
  issue: 4
  year: 2000
  ident: 451_CR14
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(00)00142-3
– volume: 5
  start-page: 269
  issue: 3
  year: 1983
  ident: 451_CR23
  publication-title: Soc. Netw.
  doi: 10.1016/0378-8733(83)90028-X
– ident: 451_CR22
  doi: 10.1145/1081870.1081898
– volume: 31
  start-page: 305
  issue: 1
  year: 2001
  ident: 451_CR27
  publication-title: Sociol. Methodol.
  doi: 10.1111/0081-1750.00098
– volume: 31
  start-page: 1116
  issue: 9
  year: 1988
  ident: 451_CR2
  publication-title: Commun. ACM
  doi: 10.1145/48529.48535
– ident: 451_CR5
– volume: 9
  start-page: 516
  issue: 7
  year: 2016
  ident: 451_CR30
  publication-title: PVLDB
– ident: 451_CR31
  doi: 10.1109/ICDE.2012.35
– ident: 451_CR32
  doi: 10.1145/2463676.2463703
– ident: 451_CR9
  doi: 10.1145/2723372.2746486
– volume: 104
  start-page: 11150
  issue: 27
  year: 2007
  ident: 451_CR8
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0701175104
SSID ssj0002225
Score 2.2899423
Snippet The problem of computing k -edge connected components ( k - ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated...
The problem of computing k-edge connected components (k- ECC s) of a graph G for a specific k is a fundamental graph problem and has been investigated...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms Algorithms
Computation
Computer memory
Computer Science
Cost analysis
Data structures
Database Management
Decomposition
Graph theory
Input output analysis
Regular Paper
Searching
Tillage
Title I/O efficient ECC graph decomposition via graph reduction
URI https://link.springer.com/article/10.1007/s00778-016-0451-4
https://www.proquest.com/docview/1880745432
Volume 26
WOSCitedRecordID wos000396780700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg6elMVuXps9SmnRSxVf9LZsHgsFaaWt_f0mabI-UEGv2Wx2mWTyZZgv3wCc5hwbLaW2nmZoQnnJEiFYlRguMi2ZwiVRvthENhiI4TC_Dfe4Z5HtHlOSfqeuL7s55RlHvLIRMGU28FmFNYt2wtVruLt_qrdfF8D4FCfn9rNCxFTmd0N8BqP3E-aXpKjHmn7zX3-5BZvhaIkul2thG1bMeAeasWwDCl68C_n1xQ0yXjrCIg7qdbvIy1YjbRzBPLC40GJUhvapk3d1bXvw2O89dK-SUEEhUSTl8ySjRqc4NR1JcikJs_6reUdnWjPCdMmFVGWqZWqqUuaaWGNKXNmIsdIZZ1Jisg-N8WRsDgBZIKPYCCdIX1GVc0ntPNpwiRhl_TrVLehEUxYqyIu7KhfPRS2M7E1TOEqZM01BW3BWv_Ky1Nb4rXM7zk8R3GxWODG5jDJKcAvO43x8ePzTYId_6n0EG9iBuefrtKExn76aY1hXi_loNj3xq-8NPQjR8A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecXp1Dz4pBTX3Jo-ytjYcE7RKXsrzaUwkCnb3O83ydp6QQV9TdO0nOTky-F8-Q7Aacyx0VJq62mGBpSnLBCCZYHhItKSKZwS5YtNRP2-GA7j2_we97RguxcpSb9Tl5fdnPKMI17ZCJgyG_gswwq1gOUE8-_uH8vt1wUwPsXJuf2sEEUq87shPoPR-wnzS1LUY027-q-_3ISN_GiJLhdrYQuWzHgbqkXZBpR78Q7E3YsbZLx0hEUc1Go2kZetRto4gnnO4kLzUZq3T5y8q2vbhYd2a9DsBHkFhUCRkM-CiBod4tA0JImlJMz6r-YNHWnNCNMpF1KloZahyVIZaxKLhsSZjRgzHXEmJSZ7UBk_j80-IAtkFBvhBOkzqmIuqZ1HGy4Ro6xfh7oGjcKUicrlxV2Vi6ekFEb2pkkcpcyZJqE1OCtfeVloa_zWuV7MT5K72TRxYnIRZZTgGpwX8_Hh8U-DHfyp9wmsdQbXvaTX7V8dwjp2wO65O3WozCav5ghW1Xw2mk6O_Up8Ax2r1NQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60inixPrFaNQdPSmiyr2yOUi0WpRZ80FvIPgIFiaWN_f3uppv4QAXxutkdlpmdzA7z7TcApzFDWgmhjKdp4hOWUp9zmvma8UgJKlGKZdlsIhoM-GgUD12f01mFdq9Kkos3DZalKS86E5V16odvloXGgrBMNkyoSYKWYYVYHL1N1--f6l-xTWbKcidjZgucV2XN70R8Dkzvt80vBdIy7vSa_97xJmy4K6d3sTgjW7Ck821oVu0cPOfdOxD3O3eeLikljFzvqtv1SjprT2kLPHfoLm8-Tt341NK-2rFdeOxdPXSvfddZwZc4ZIUfEa1CFOpA4FgITI1fKxaoSCmKqUoZFzINlQh1lopY4ZgHAmUmk8xUxKgQCO9BI3_J9T54JsARpLklqs-IjJkgxr4mjcJaGn8PVQuCSq2JdLTjtvvFc1ITJpeqSSzUzKomIS04q5dMFpwbv01uV7ZKnPvNEksyFxFKMGrBeWWbD59_Enbwp9knsDa87CW3_cHNIawjG-9LSE8bGsX0VR_BqpwX49n0uDyUb40i3bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=I%2FO+efficient+ECC+graph+decomposition+via+graph+reduction&rft.jtitle=The+VLDB+journal&rft.au=Yuan%2C+Long&rft.au=Qin%2C+Lu&rft.au=Lin%2C+Xuemin&rft.au=Chang%2C+Lijun&rft.date=2017-04-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=26&rft.issue=2&rft.spage=275&rft.epage=300&rft_id=info:doi/10.1007%2Fs00778-016-0451-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_016_0451_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon