Infinite-dimensional port-Hamiltonian systems: a system node approach
We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005)...
Uloženo v:
| Vydáno v: | Mathematics of control, signals, and systems Ročník 37; číslo 3; s. 573 - 620 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0932-4194, 1435-568X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples. |
|---|---|
| AbstractList | We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples. We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as reported by Staffans (Well-posed linear systems. Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge, UK, 2005) to formulate a suitable concept for port-Hamiltonian systems, which allows a unifying approach to systems with boundary as well as distributed control and observation. The concept presented in this article is further neither limited to parabolic nor hyperbolic systems, and it also covers partial differential equations on multi-dimensional spatial domains. Our presented theory is substantiated by means of several physical examples. |
| Author | Philipp, Friedrich M. Reis, Timo Schaller, Manuel |
| Author_xml | – sequence: 1 givenname: Friedrich M. surname: Philipp fullname: Philipp, Friedrich M. organization: Optimization-Based Control Group, Technische Universität Ilmenau – sequence: 2 givenname: Timo surname: Reis fullname: Reis, Timo organization: Systems Theory and Partial Differential Equations Group, Technische Universität Ilmenau – sequence: 3 givenname: Manuel surname: Schaller fullname: Schaller, Manuel email: manuel.schaller@math.tu-chemnitz.de organization: Faculty of Mathematics, Chemnitz University of Technology |
| BookMark | eNp9kLtOwzAUhi0EEm3hBZgiMRvO8TVhQ1WhlSqxgMRmOYkDqRo72OnQtyeQSmxM5x_-y9E3J-c-eEfIDcIdAuj7BCCKnAKTdFTIKJyRGQouqVT5-zmZQcEZFViISzJPaQcAqDTOyGrjm9a3g6N12zmf2uDtPutDHOjadu1-CL61PkvHNLguPWT2JDMfapfZvo_BVp9X5KKx--SuT3dB3p5Wr8s13b48b5aPW1pxVAPVolQMa1flRYmsLpHLomHcFlpIyYBjrnMnVVUKhdrWlSprXgrZ2ILXaLHiC3I79Y6zXweXBrMLhzh-nAxnQnOZK5Cji02uKoaUomtMH9vOxqNBMD-4zITLjLjMLy4DY4hPoTSa_YeLf9X_pL4Bd5du1w |
| Cites_doi | 10.1090/surv/015 10.1016/S0022-247X(02)00455-9 10.1137/20M1371166 10.1137/15M1024901 10.1007/978-3-030-36714-5 10.1137/110831726 10.1007/978-3-030-35898-3_4 10.1007/978-3-7643-8994-9 10.1007/978-3-0348-0399-1 10.1137/1.9781611972597 10.1090/S0033-569X-06-00994-7 10.1109/LCSYS.2019.2916814 10.1007/978-3-319-32062-5 10.1016/j.automatica.2013.11.035 10.1109/CDC40024.2019.9030180 10.1017/CBO9780511543197 10.1016/j.automatica.2019.02.010 10.1007/s00498-018-0223-3 10.1137/20M1366216 10.1137/040611677 10.1137/120869444 10.1007/s00498-023-00349-2 10.1016/j.sysconle.2023.105564 10.1561/2600000002 10.1137/18M1181304 10.3934/eect.2020098 10.1016/S0393-0440(01)00083-3 10.3934/eect.2014.3.207 10.1016/j.ifacol.2021.11.078 10.1007/s00020-024-02780-9 10.1007/s004980200012 10.1016/j.ifacol.2021.11.082 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s00498-025-00412-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1435-568X |
| EndPage | 620 |
| ExternalDocumentID | 10_1007_s00498_025_00412_0 |
| GrantInformation_xml | – fundername: Carl-Zeiss-Stiftung grantid: DeepTurb-Learning in and from turbulence funderid: http://dx.doi.org/10.13039/100007569 – fundername: Bundesministerium für Bildung und Forschung grantid: ThinKI funderid: http://dx.doi.org/10.13039/501100002347 – fundername: Technische Universität Chemnitz (3137) |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2P M4Y M7S MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~8M ~A9 ~EX AAYXX AFFHD CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c316t-74b621dec89b12db1359f23a974552031878e56cb4617adc6bd3b45fa93d1a1c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001501387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0932-4194 |
| IngestDate | Wed Nov 05 06:13:02 EST 2025 Sat Nov 29 07:34:46 EST 2025 Sat Sep 06 10:14:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Boundary control Infinite-dimensional systems System nodes Port-Hamiltonian systems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-74b621dec89b12db1359f23a974552031878e56cb4617adc6bd3b45fa93d1a1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s00498-025-00412-0 |
| PQID | 3247358605 |
| PQPubID | 29789 |
| PageCount | 48 |
| ParticipantIDs | proquest_journals_3247358605 crossref_primary_10_1007_s00498_025_00412_0 springer_journals_10_1007_s00498_025_00412_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationSubtitle | MCSS |
| PublicationTitle | Mathematics of control, signals, and systems |
| PublicationTitleAbbrev | Math. Control Signals Syst |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | B Augner (412_CR39) 2016 H Gernandt (412_CR3) 2021; 42 MR Opmeer (412_CR21) 2019; 57 A Buffa (412_CR43) 2002; 276 C Beattie (412_CR1) 2018; 30 JA Villegas (412_CR11) 2007 412_CR17 E Zeidler (412_CR31) 2012 BDO Anderson (412_CR34) 1973 B Jacob (412_CR14) 2019; 3 M Tucsnak (412_CR24) 2009 K-J Engel (412_CR33) 2000 412_CR30 M Schöberl (412_CR8) 2014; 50 OJ Staffans (412_CR18) 2005 FL Schwenninger (412_CR37) 2020 AJ van der Schaft (412_CR6) 2021; 54 P Grisvard (412_CR35) 1985 PG Ciarlet (412_CR42) 2013 B Jacob (412_CR15) 2021; 59 RA Adams (412_CR22) 2003 412_CR29 G Weiss (412_CR44) 2002; 51 Y Le Gorrec (412_CR9) 2005; 44 T Reis (412_CR10) 2021; 54 AJ van der Schaft (412_CR4) 2023; 177 MR Opmeer (412_CR20) 2014; 52 B Jacob (412_CR13) 2019; 103 J Behrndt (412_CR27) 2020 T Kato (412_CR28) 2013 J Malinen (412_CR26) 2006; 64 N Skrepek (412_CR16) 2021; 10 B Jacob (412_CR12) 2012 B Augner (412_CR40) 2014; 3 412_CR41 V Mehrmann (412_CR5) 2023; 35 B Augner (412_CR38) 2019; 57 C Johnson (412_CR32) 1987 J Diestel (412_CR23) 1977 OJ Staffans (412_CR19) 2022; 15 AJ van der Schaft (412_CR7) 2002; 42 L Tartar (412_CR36) 2007 AJ van der Schaft (412_CR2) 2014; 1 HW Alt (412_CR25) 2016 |
| References_xml | – volume-title: Vector measures year: 1977 ident: 412_CR23 doi: 10.1090/surv/015 – volume-title: Applied functional analysis, applications to mathematical physics year: 2012 ident: 412_CR31 – volume: 276 start-page: 845 year: 2002 ident: 412_CR43 publication-title: J Math Anal Appl doi: 10.1016/S0022-247X(02)00455-9 – volume-title: Perturbation theory for linear operators year: 2013 ident: 412_CR28 – volume-title: Numerical solution of partial differential equations by the finite element method year: 1987 ident: 412_CR32 – volume: 42 start-page: 1011 issue: 2 year: 2021 ident: 412_CR3 publication-title: SIAM J Matrix Anal Appl doi: 10.1137/20M1371166 – volume-title: An application-oriented introduction year: 2016 ident: 412_CR25 – volume: 57 start-page: 1818 issue: 3 year: 2019 ident: 412_CR38 publication-title: SIAM J Control Optim doi: 10.1137/15M1024901 – volume-title: Boundary value problems, Weyl functions, and differential operators year: 2020 ident: 412_CR27 doi: 10.1007/978-3-030-36714-5 – volume-title: Stabilisation of infinite-dimensional port-Hamiltonian systems via dissipative boundary feedback year: 2016 ident: 412_CR39 – volume-title: An introduction to Sobolev spaces and interpolation spaces year: 2007 ident: 412_CR36 – volume-title: Sobolev spaces year: 2003 ident: 412_CR22 – volume: 52 start-page: 1958 issue: 3 year: 2014 ident: 412_CR20 publication-title: SIAM J Control Optim doi: 10.1137/110831726 – start-page: 83 volume-title: Control theory of infinite-dimensional systems year: 2020 ident: 412_CR37 doi: 10.1007/978-3-030-35898-3_4 – volume-title: Observation and control for operator semigroups year: 2009 ident: 412_CR24 doi: 10.1007/978-3-7643-8994-9 – volume-title: Linear port-Hamiltonian systems on infinite-dimensional spaces year: 2012 ident: 412_CR12 doi: 10.1007/978-3-0348-0399-1 – volume-title: Linear and nonlinear functional analysis with applications year: 2013 ident: 412_CR42 doi: 10.1137/1.9781611972597 – volume: 64 start-page: 61 issue: 1 year: 2006 ident: 412_CR26 publication-title: Q Appl Math doi: 10.1090/S0033-569X-06-00994-7 – volume: 3 start-page: 661 issue: 3 year: 2019 ident: 412_CR14 publication-title: IEEE Control Syst Lett doi: 10.1109/LCSYS.2019.2916814 – ident: 412_CR41 doi: 10.1007/978-3-319-32062-5 – volume: 50 start-page: 607 issue: 2 year: 2014 ident: 412_CR8 publication-title: Automatica doi: 10.1016/j.automatica.2013.11.035 – volume-title: A port-Hamiltonian approach to distributed parameter systems year: 2007 ident: 412_CR11 – ident: 412_CR17 doi: 10.1109/CDC40024.2019.9030180 – volume-title: Well-posed linear systems. Encyclopedia of mathematics and its applications year: 2005 ident: 412_CR18 doi: 10.1017/CBO9780511543197 – volume: 103 start-page: 310 year: 2019 ident: 412_CR13 publication-title: Automatica doi: 10.1016/j.automatica.2019.02.010 – volume: 30 start-page: 17 issue: 4 year: 2018 ident: 412_CR1 publication-title: Math Control Signals Syst doi: 10.1007/s00498-018-0223-3 – volume-title: Network analysis and synthesis year: 1973 ident: 412_CR34 – volume: 59 start-page: 4646 issue: 6 year: 2021 ident: 412_CR15 publication-title: SIAM J Control Optim doi: 10.1137/20M1366216 – volume-title: Elliptic problems in nonsmooth domains year: 1985 ident: 412_CR35 – volume: 44 start-page: 1864 issue: 5 year: 2005 ident: 412_CR9 publication-title: SIAM J Control Optim doi: 10.1137/040611677 – volume: 51 start-page: 3722 issue: 5 year: 2002 ident: 412_CR44 publication-title: SIAM J Control Optim doi: 10.1137/120869444 – volume: 35 start-page: 541 issue: 3 year: 2023 ident: 412_CR5 publication-title: Math Control Signals Syst doi: 10.1007/s00498-023-00349-2 – volume: 177 year: 2023 ident: 412_CR4 publication-title: Syst Control Lett doi: 10.1016/j.sysconle.2023.105564 – volume: 1 start-page: 173 issue: 2–3 year: 2014 ident: 412_CR2 publication-title: Found Trends Syst Control doi: 10.1561/2600000002 – volume: 57 start-page: 1985 issue: 3 year: 2019 ident: 412_CR21 publication-title: SIAM J Control Optim doi: 10.1137/18M1181304 – volume: 10 start-page: 965 issue: 4 year: 2021 ident: 412_CR16 publication-title: Evol Equ Control Theory doi: 10.3934/eect.2020098 – volume: 42 start-page: 166 issue: 1–2 year: 2002 ident: 412_CR7 publication-title: J Geom Phys doi: 10.1016/S0393-0440(01)00083-3 – volume: 3 start-page: 207 issue: 2 year: 2014 ident: 412_CR40 publication-title: Evol Equ Control Theory doi: 10.3934/eect.2014.3.207 – volume: 54 start-page: 198 issue: 19 year: 2021 ident: 412_CR6 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.11.078 – ident: 412_CR29 doi: 10.1007/s00020-024-02780-9 – ident: 412_CR30 – volume: 15 start-page: 291 issue: 4 year: 2022 ident: 412_CR19 publication-title: Math Control Signals Syst doi: 10.1007/s004980200012 – volume-title: One-parameter semigroups for linear evolution equations year: 2000 ident: 412_CR33 – volume: 54 start-page: 223 issue: 19 year: 2021 ident: 412_CR10 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.11.082 |
| SSID | ssj0001671 |
| Score | 2.3932788 |
| Snippet | We consider an operator-theoretic approach to linear infinite-dimensional port-Hamiltonian systems. In particular, we use the theory of system nodes as... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 573 |
| SubjectTerms | Communications Engineering Control Energy Hamiltonian functions Hilbert space Hyperbolic systems Linear systems Mathematics Mathematics and Statistics Mechatronics Networks Ordinary differential equations Original Article Partial differential equations Robotics System theory Systems Theory |
| Title | Infinite-dimensional port-Hamiltonian systems: a system node approach |
| URI | https://link.springer.com/article/10.1007/s00498-025-00412-0 https://www.proquest.com/docview/3247358605 |
| Volume | 37 |
| WOSCitedRecordID | wos001501387500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1435-568X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001671 issn: 0932-4194 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQ4AAH3ojBQD1wg0hN0qYpN4SGxoEJ8dJuVV6TdunQOvj9OGm7AYID3Fq1sirbiT_X8WeAs9iKWCVCEakdJijOFwmNEySxiaZOcq2tDsMmsuFQjkb5fdMUVrWn3duSZNipF81uHsxK4sevBpIogon6KoY76Qc2PDy-LPZfKkKahak68zXOpGmV-VnG13C0xJjfyqIh2txs_e87t2GzQZfRVe0OO7Diyl3Y-MQ5iHd3C6LWag_6t-V44mEnsZ7mv6boiDwmJwP_6wORIfpPVPM9V5eRai6jcmpd1BKS78PzTf_pekCayQrEcCrmJEu0YNQ6I3NNmdWUp_mYcYXJRZoyv84z6VJhdIIAR1kjtOU6Sccq55YqavgBdMpp6Q4hQlOz2GaZzgSiQxRoKfNzErTiNNXcdOG8VXDxWhNoFAuq5KCqAlVVBFUVcRd6rQ2KZjFVBWK-jKcSE68uXLQ6Xz7-XdrR314_hnUWzOZPkPWgM5-9uRNYM-_zSTU7DU72AYogyno |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQIAEH3ojBgB64QaTl0bTlhtCmTWwTgoF2i5Imk3bp0Dr4_STpY4DgALdWrazKduLPdfwZ4LKleUsyLlGsjE1QjCsSpoYjppnCJqZKaeWHTUTDYTweJw9lU1henXavSpJ-p66b3RyYjZEbv-pJopBN1NeYjViOMf_x6aXefzH3aZZN1YmrcbKyVeZnGV_D0RJjfiuL-mjT2fnfd-7Cdokug9vCHfZgxWT7sPWJc9DeDWqi1vwA2r1sMnWwE2lH819QdAQOk6Ou-_VhkaH1n6Dge85vAlleBtlMm6AiJD-E5057dNdF5WQFlFLMFyhiihOsTRonChOtMA2TCaHSJhdhSNw6j2IT8lQxC3CkTrnSVLFwIhOqscQpPYLVbJaZYwisqUlLR5GKuEWHVqDGxM1JUJLiUNG0AVeVgsVrQaAhaqpkryphVSW8qkSrAc3KBqJcTLmwmC-iYWwTrwZcVzpfPv5d2snfXr-Aje5o0Bf93vD-FDaJN6E7TdaE1cX8zZzBevq-mObzc-9wHxGhzV4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxO7YNvGtY0adr6JrqxoY6BF_YWcivspRtr9febpJdN0QfxraUhlJOT5vt6zvkOAJe-oj4nlMNYaENQtA0SSk0hUUQgHWMhlHDNJqLhMB6Pk9FSFb_Ldq9DkmVNg1VpyorOTKWdpvDNAtsY2lasTjAKGtK-RmwiveXrz2_NtxhRR7kMbQ9svJNUZTM_z_H1aFrgzW8hUnfy9Hb-_867YLtCnd5t6SZ7YEVn-2BrSYvQ3D01Aq75AegOsnRi4ShUVv6_lO7wLFaHfftLxCBG41deqQOd33i8uvSyqdJeLVR-CF573Ze7Pqw6LkCJES1gRAQNkNIyTgQKlEA4TNIAc0M6wjCw-z-KdUilIAb4cCWpUFiQMOUJVogjiY_AajbN9DHwjAsEvooiEVGDGs2ECgW2f4LgGIUCyxa4qo3NZqWwBmsklJ2pmDEVc6Zifgu06_Vg1SbLmcGCEQ5jQ8ha4Lq2_-Lx77Od_G34BdgY3ffY42D4cAo2A7eCNsmsDVaL-bs-A-vyo5jk83Pne5-m79ZC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infinite-dimensional+port-Hamiltonian+systems%3A+a+system+node+approach&rft.jtitle=Mathematics+of+control%2C+signals%2C+and+systems&rft.au=Philipp%2C+Friedrich+M&rft.au=Reis%2C+Timo&rft.au=Schaller%2C+Manuel&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-4194&rft.eissn=1435-568X&rft.volume=37&rft.issue=3&rft.spage=573&rft.epage=620&rft_id=info:doi/10.1007%2Fs00498-025-00412-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-4194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-4194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-4194&client=summon |