A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs
Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategi...
Saved in:
| Published in: | Journal of scientific computing Vol. 68; no. 2; pp. 484 - 520 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.08.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size
Δ
t
varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations. |
|---|---|
| AbstractList | Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size
Δ
t
varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations. Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size Δt varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations. |
| Author | Chen, Dangxing Huang, Jingfang Brandon, Namdi Qu, Wenzhen Kress, Tyler |
| Author_xml | – sequence: 1 givenname: Wenzhen surname: Qu fullname: Qu, Wenzhen organization: Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University – sequence: 2 givenname: Namdi surname: Brandon fullname: Brandon, Namdi organization: Department of Mathematics, University of North Carolina – sequence: 3 givenname: Dangxing surname: Chen fullname: Chen, Dangxing organization: Department of Mathematics, University of North Carolina – sequence: 4 givenname: Jingfang surname: Huang fullname: Huang, Jingfang email: huang@email.unc.edu organization: Department of Mathematics, University of North Carolina – sequence: 5 givenname: Tyler surname: Kress fullname: Kress, Tyler organization: Department of Mathematics, University of North Carolina |
| BookMark | eNp9kDtPwzAQgC1UJNrCD2CzxBywHceOx6oPWqnQAZgjN7XTlCQuZ7eIf09IkZCQYDjdDd93rwHqNa4xCF1TcksJkXeeEkWTiHTBRaTOUJ8mMo6kULSH-iRNk0hyyS_QwPsdIUSlivXRcYQfD7WBMtcVnoGuzbuDV2wd4EUTTAE6lE2BJ8YaALPBY9emPJSuwQ8mbN3G4-Dwk6uOBs_LYotXsDHQYlXlct1xMwf1oepqj53Fq8nUX6Jzqytvrr7zEL3Mps_jebRc3S_Go2WUx1SESDJhRSJZEueEMkuFUIQJrmhKcsaVbi-PldRJuiaJpqm2PKVGCss2cs2FtfEQ3Zz67sG9HYwP2c4doGlHZqztEtOY8ril5InKwXkPxmZ5GbqFA-iyyijJvp6cnZ6ckS64yFRr0l_mHspaw8e_Djs5vmWbwsDPTn9Ln_qSj8w |
| CitedBy_id | crossref_primary_10_1137_24M1649800 crossref_primary_10_1007_s10409_025_25309_x crossref_primary_10_1016_j_apm_2019_02_023 crossref_primary_10_1007_s10915_020_01235_8 crossref_primary_10_1016_j_ijsolstr_2025_113451 crossref_primary_10_1360_CSB_2025_0614 crossref_primary_10_1016_j_camwa_2024_08_025 crossref_primary_10_1016_j_enganabound_2024_105873 crossref_primary_10_1002_nme_5948 crossref_primary_10_1016_j_jcp_2019_01_027 crossref_primary_10_1016_j_aml_2023_108868 crossref_primary_10_1007_s10915_017_0552_2 crossref_primary_10_1137_16M1060078 crossref_primary_10_1137_18M117368X crossref_primary_10_1016_j_aml_2019_06_010 crossref_primary_10_1016_j_jcp_2018_09_041 crossref_primary_10_1016_j_tafmec_2025_105107 |
| Cites_doi | 10.1007/978-3-642-55692-0_5 10.1016/j.jcp.2005.10.004 10.1137/S003614299732098X 10.1137/1.9781611970425 10.1016/j.jcp.2007.09.018 10.1137/1.9781611970944 10.1007/s10543-005-0016-1 10.1090/S0025-5718-2014-02834-2 10.1137/0915088 10.1137/05064607X 10.1007/978-3-642-05221-7 10.1137/0907058 10.1137/090754340 10.1016/S0377-0427(00)00464-7 10.1073/pnas.0605166103 10.1007/s10915-008-9245-1 10.1137/1.9780898718898 10.1016/S0168-9274(02)00138-1 10.1016/j.jcp.2003.08.010 10.1090/S0025-5718-09-02276-5 10.1137/0728057 10.1007/BFb0093947 10.1007/978-3-642-84108-8 10.1137/1.9781611971538 10.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I 10.2140/camcos.2012.7.105 10.1016/0021-9991(87)90140-9 10.1016/j.jcp.2014.02.001 10.1016/j.jcp.2006.06.040 10.1137/060659831 10.1023/B:NUMA.0000033129.73715.7f 10.1023/A:1022338906936 10.1007/978-3-662-05018-7 10.1137/1.9781611971392 10.1137/100810216 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2015. |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2015. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-015-0146-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 520 |
| ExternalDocumentID | 10_1007_s10915_015_0146_9 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 0941235 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Directorate for Mathematical and Physical Sciences grantid: 1217080 funderid: http://dx.doi.org/10.13039/100000086 – fundername: China Scholarship Council grantid: 201306710026 funderid: http://dx.doi.org/10.13039/501100004543 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-726f657253c012f166902649180c249a007397a58b05a18af481e76f2d7b46ff3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379329500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 01:27:17 EST 2025 Sat Nov 29 01:56:16 EST 2025 Tue Nov 18 22:40:11 EST 2025 Fri Feb 21 02:36:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Deferred correction methods Krylov subspace methods 65M70 Collocation formulations Preconditioners 65B05 Jacobian-free Newton–Krylov methods 65M12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-726f657253c012f166902649180c249a007397a58b05a18af481e76f2d7b46ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918313143 |
| PQPubID | 2043771 |
| PageCount | 37 |
| ParticipantIDs | proquest_journals_2918313143 crossref_citationtrail_10_1007_s10915_015_0146_9 crossref_primary_10_1007_s10915_015_0146_9 springer_journals_10_1007_s10915_015_0146_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20160800 2016-8-00 20160801 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 8 year: 2016 text: 20160800 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003) BrownPHindmarshAPetzoldLUsing Krylov methods in the solution of large-scale differential-algebraic systemsSIAM J. Sci. Comput.19941514671488129862510.1137/09150880812.65060 StoerJBulirschRIntroduction to Numerical Analysis1992BerlinSpringer0771.65002 DuttAGreengardLRokhlinVSpectral deferred correction methods for ordinary differential equationsBIT Numer. Math.2000402241266176573610.1023/A:10223389069360959.65084 Mazzia, F., et al.: Test set for IVP solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.19912810711080111145410.1137/07280570731.65064 AuzingerWHofstatterHKreuzerWWeinmullerEModified defect correction algorithms for ODEs. Part I: general theoryNumer. Algorithms200436135156206287010.1023/B:NUMA.0000033129.73715.7f1058.65068 HuangJJiaJMinionMAccelerating the convergence of spectral deferred correction methodsJ. Comput. Phys.2006214633656221660710.1016/j.jcp.2005.10.0041094.65066 EmmettMMinionMToward an efficient parallel in time method for partial differential equationsCommun. Appl. Math. Comput. Sci.201271105132297951810.2140/camcos.2012.7.1051248.65106 HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2002BerlinSpringer10.1007/978-3-662-05018-70994.65135 CausleyMChristliebAOngBVan GroningenLMethod of lines transpose: an implicit solution to the wave equationMath. Comput.20148327632786324680810.1090/S0025-5718-2014-02834-21307.65122 ChristliebAOngBQiuJMIntegral deferred correction methods constructed with high order Runge–Kutta integratorsMath. Comput.201079270761783260054210.1090/S0025-5718-09-02276-51209.65073 HairerELubichCRocheMThe Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods1989BerlinSpringer0683.65050 HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067 KnollDKeyesDJacobian-free Newton–Krylov methods: a survey of approaches and applicationsJ. Comput. Phys.20041932357397203047110.1016/j.jcp.2003.08.0101036.65045 KushnirDRokhlinVA highly accurate solver for stiff ordinary differential equationsSIAM J. Sci. Comput.2012343A1296A1315297025310.1137/1008102161246.65103 GanderMJVandewalleSAnalysis of the parareal time-parallel time-integration methodSIAM J. Sci. Comput.2007292556578230625810.1137/05064607X1141.65064 LaytonATMinionMLImplications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equationsBIT Numer. Math.2005452341373217619810.1007/s10543-005-0016-11078.65552 TrefethenLIs Gauss quadrature better than Clenshaw–Curtis?SIAM Rev.20085016787240305810.1137/0606598311141.65018 BarrioROn the a-stability of Runge–Kutta collocation methods based on orthogonal polynomialsSIAM J. Numer. Anal.199936412911303170178810.1137/S003614299732098X0942.65088 CanutoCHussainiMQuarteroniAZangTSpectral Methods in Fluid Dynamics1988BerlinSpringer10.1007/978-3-642-84108-80658.76001 BeylkinGSandbergKOde solvers using band-limited approximationsJ. Comput. Phys.2014265156171317314110.1016/j.jcp.2014.02.001 GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.19877332534891844810.1016/0021-9991(87)90140-90629.65005 KellyCIterative Methods for Linear and Nonlinear Equations1995PhiladelphiaSIAM10.1137/1.9781611970944 JiaJLiuJStable and spectrally accurate schemes for the Navier–Stokes equationsSIAM J. Sci. Comput.201133524212439283753910.1137/0907543401232.65132 BarrettRTemplates for the Solution of Linear Systems: Building Blocks for Iterative Methods19942PhiladelphiaSIAM10.1137/1.9781611971538 SaadYSchultzMGMRES: a generalized minimal residual algorithm for solving non-symmetric linear systemsSIAM J. Sci. Stat. Comput.1986785686984856810.1137/09070580599.65018 JiaJHuangJKrylov deferred correction accelerated method of lines transpose for parabolic problemsJ. Comput. Phys.2008227317391753245097010.1016/j.jcp.2007.09.0181134.65064 HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125 AscherUPetzoldLComputer Methods for Ordinary Differential Equations and Differential-Algebraic Equations1998PhiladelphiaSIAM10.1137/1.97816119713920908.65055 ChenWWangXYuYReducing the computational requirements of the differential quadrature methodNumer. Methods Partial Differ. Equ.199612565577141137310.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I0868.65014 GlaserARokhlinVA new class of highly accurate solvers for ordinary differential equationsJ. Sci. Comput.2009383368399247565710.1007/s10915-008-9245-11203.65102 GottliebDOrszagSNumerical Analysis of Spectral Methods1977PhiladelphiaSIAM10.1137/1.97816119704250412.65058 KennedyCCarpenterMHAdditive Runge–Kutta schemes for convection–diffusion–reaction equationsAppl. Numer. Math.200344139181195129210.1016/S0168-9274(02)00138-11013.65103 HuangJJiaJMinionMArbitrary order Krylov deferred correction methods for differential algebraic equationsJ. Comput. Phys.20072212739760229314810.1016/j.jcp.2006.06.0401110.65076 KellyCSolving Nonlinear Equations with Newton’s Method2003PhiladelphiaSIAM10.1137/1.9780898718898 LionsJMadayYTuriniciGA “parareal” in time discretization of PDE’sComptes Rendus de l’Academie des Sciences Series I Mathematics2001332766166818424650984.65085 AtkinsonKAn Introduction to Numerical Analysis19892HobokenWiley0718.65001 LiSPetzoldLSoftware and algorithms for sensitivity analysis of large-scale differential algebraic systemsJ. Comput. Appl. Math.20001251131145180318710.1016/S0377-0427(00)00464-70971.65074 LuBXiaolinCHuangJMcCammonAOrder N algorithm for computation of electrostatic interactions in biomolecular systemsProc. Nat. Acad. Sci.200610351193141931910.1073/pnas.0605166103 E Hairer (146_CR20) 1989 J Huang (146_CR24) 2006; 214 146_CR37 J Jia (146_CR26) 2008; 227 MJ Gander (146_CR14) 2007; 29 A Christlieb (146_CR11) 2010; 79 AT Layton (146_CR33) 2005; 45 G Beylkin (146_CR6) 2014; 265 C Kelly (146_CR28) 1995 A Dutt (146_CR12) 2000; 40 E Hairer (146_CR21) 2002 M Emmett (146_CR13) 2012; 7 S Li (146_CR34) 2000; 125 M Causley (146_CR9) 2014; 83 E Hairer (146_CR23) 1996 A Glaser (146_CR15) 2009; 38 R Barrett (146_CR4) 1994 D Knoll (146_CR31) 2004; 193 R Barrio (146_CR5) 1999; 36 D Gottlieb (146_CR16) 1977 L Greengard (146_CR18) 1987; 73 L Greengard (146_CR17) 1991; 28 J Stoer (146_CR39) 1992 C Canuto (146_CR8) 1988 J Jia (146_CR27) 2011; 33 B Lu (146_CR36) 2006; 103 W Chen (146_CR10) 1996; 12 P Brown (146_CR7) 1994; 15 J Huang (146_CR25) 2007; 221 L Trefethen (146_CR40) 2008; 50 W Auzinger (146_CR3) 2004; 36 J Lions (146_CR35) 2001; 332 C Kelly (146_CR29) 2003 Y Saad (146_CR38) 1986; 7 C Kennedy (146_CR30) 2003; 44 D Kushnir (146_CR32) 2012; 34 146_CR19 U Ascher (146_CR1) 1998 K Atkinson (146_CR2) 1989 E Hairer (146_CR22) 2006 |
| References_xml | – reference: BrownPHindmarshAPetzoldLUsing Krylov methods in the solution of large-scale differential-algebraic systemsSIAM J. Sci. Comput.19941514671488129862510.1137/09150880812.65060 – reference: AuzingerWHofstatterHKreuzerWWeinmullerEModified defect correction algorithms for ODEs. Part I: general theoryNumer. Algorithms200436135156206287010.1023/B:NUMA.0000033129.73715.7f1058.65068 – reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067 – reference: Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003) – reference: HuangJJiaJMinionMAccelerating the convergence of spectral deferred correction methodsJ. Comput. Phys.2006214633656221660710.1016/j.jcp.2005.10.0041094.65066 – reference: KellyCIterative Methods for Linear and Nonlinear Equations1995PhiladelphiaSIAM10.1137/1.9781611970944 – reference: LiSPetzoldLSoftware and algorithms for sensitivity analysis of large-scale differential algebraic systemsJ. Comput. Appl. Math.20001251131145180318710.1016/S0377-0427(00)00464-70971.65074 – reference: HuangJJiaJMinionMArbitrary order Krylov deferred correction methods for differential algebraic equationsJ. Comput. Phys.20072212739760229314810.1016/j.jcp.2006.06.0401110.65076 – reference: TrefethenLIs Gauss quadrature better than Clenshaw–Curtis?SIAM Rev.20085016787240305810.1137/0606598311141.65018 – reference: ChristliebAOngBQiuJMIntegral deferred correction methods constructed with high order Runge–Kutta integratorsMath. Comput.201079270761783260054210.1090/S0025-5718-09-02276-51209.65073 – reference: GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.19912810711080111145410.1137/07280570731.65064 – reference: KellyCSolving Nonlinear Equations with Newton’s Method2003PhiladelphiaSIAM10.1137/1.9780898718898 – reference: StoerJBulirschRIntroduction to Numerical Analysis1992BerlinSpringer0771.65002 – reference: CausleyMChristliebAOngBVan GroningenLMethod of lines transpose: an implicit solution to the wave equationMath. Comput.20148327632786324680810.1090/S0025-5718-2014-02834-21307.65122 – reference: ChenWWangXYuYReducing the computational requirements of the differential quadrature methodNumer. Methods Partial Differ. Equ.199612565577141137310.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I0868.65014 – reference: LaytonATMinionMLImplications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equationsBIT Numer. Math.2005452341373217619810.1007/s10543-005-0016-11078.65552 – reference: SaadYSchultzMGMRES: a generalized minimal residual algorithm for solving non-symmetric linear systemsSIAM J. Sci. Stat. Comput.1986785686984856810.1137/09070580599.65018 – reference: CanutoCHussainiMQuarteroniAZangTSpectral Methods in Fluid Dynamics1988BerlinSpringer10.1007/978-3-642-84108-80658.76001 – reference: GlaserARokhlinVA new class of highly accurate solvers for ordinary differential equationsJ. Sci. Comput.2009383368399247565710.1007/s10915-008-9245-11203.65102 – reference: EmmettMMinionMToward an efficient parallel in time method for partial differential equationsCommun. Appl. Math. Comput. Sci.201271105132297951810.2140/camcos.2012.7.1051248.65106 – reference: GanderMJVandewalleSAnalysis of the parareal time-parallel time-integration methodSIAM J. Sci. Comput.2007292556578230625810.1137/05064607X1141.65064 – reference: JiaJHuangJKrylov deferred correction accelerated method of lines transpose for parabolic problemsJ. Comput. Phys.2008227317391753245097010.1016/j.jcp.2007.09.0181134.65064 – reference: BarrettRTemplates for the Solution of Linear Systems: Building Blocks for Iterative Methods19942PhiladelphiaSIAM10.1137/1.9781611971538 – reference: HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125 – reference: KushnirDRokhlinVA highly accurate solver for stiff ordinary differential equationsSIAM J. Sci. Comput.2012343A1296A1315297025310.1137/1008102161246.65103 – reference: AtkinsonKAn Introduction to Numerical Analysis19892HobokenWiley0718.65001 – reference: AscherUPetzoldLComputer Methods for Ordinary Differential Equations and Differential-Algebraic Equations1998PhiladelphiaSIAM10.1137/1.97816119713920908.65055 – reference: BarrioROn the a-stability of Runge–Kutta collocation methods based on orthogonal polynomialsSIAM J. Numer. Anal.199936412911303170178810.1137/S003614299732098X0942.65088 – reference: GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.19877332534891844810.1016/0021-9991(87)90140-90629.65005 – reference: LuBXiaolinCHuangJMcCammonAOrder N algorithm for computation of electrostatic interactions in biomolecular systemsProc. Nat. Acad. Sci.200610351193141931910.1073/pnas.0605166103 – reference: BeylkinGSandbergKOde solvers using band-limited approximationsJ. Comput. Phys.2014265156171317314110.1016/j.jcp.2014.02.001 – reference: KennedyCCarpenterMHAdditive Runge–Kutta schemes for convection–diffusion–reaction equationsAppl. Numer. Math.200344139181195129210.1016/S0168-9274(02)00138-11013.65103 – reference: DuttAGreengardLRokhlinVSpectral deferred correction methods for ordinary differential equationsBIT Numer. Math.2000402241266176573610.1023/A:10223389069360959.65084 – reference: HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2002BerlinSpringer10.1007/978-3-662-05018-70994.65135 – reference: LionsJMadayYTuriniciGA “parareal” in time discretization of PDE’sComptes Rendus de l’Academie des Sciences Series I Mathematics2001332766166818424650984.65085 – reference: Mazzia, F., et al.: Test set for IVP solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers – reference: KnollDKeyesDJacobian-free Newton–Krylov methods: a survey of approaches and applicationsJ. Comput. Phys.20041932357397203047110.1016/j.jcp.2003.08.0101036.65045 – reference: GottliebDOrszagSNumerical Analysis of Spectral Methods1977PhiladelphiaSIAM10.1137/1.97816119704250412.65058 – reference: HairerELubichCRocheMThe Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods1989BerlinSpringer0683.65050 – reference: JiaJLiuJStable and spectrally accurate schemes for the Navier–Stokes equationsSIAM J. Sci. Comput.201133524212439283753910.1137/0907543401232.65132 – volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2006 ident: 146_CR22 – ident: 146_CR19 doi: 10.1007/978-3-642-55692-0_5 – volume: 214 start-page: 633 year: 2006 ident: 146_CR24 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.10.004 – volume: 36 start-page: 1291 issue: 4 year: 1999 ident: 146_CR5 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S003614299732098X – volume-title: Numerical Analysis of Spectral Methods year: 1977 ident: 146_CR16 doi: 10.1137/1.9781611970425 – volume: 227 start-page: 1739 issue: 3 year: 2008 ident: 146_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.09.018 – volume: 332 start-page: 661 issue: 7 year: 2001 ident: 146_CR35 publication-title: Comptes Rendus de l’Academie des Sciences Series I Mathematics – volume-title: Iterative Methods for Linear and Nonlinear Equations year: 1995 ident: 146_CR28 doi: 10.1137/1.9781611970944 – volume: 45 start-page: 341 issue: 2 year: 2005 ident: 146_CR33 publication-title: BIT Numer. Math. doi: 10.1007/s10543-005-0016-1 – volume: 83 start-page: 2763 year: 2014 ident: 146_CR9 publication-title: Math. Comput. doi: 10.1090/S0025-5718-2014-02834-2 – volume: 15 start-page: 1467 year: 1994 ident: 146_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915088 – volume: 29 start-page: 556 issue: 2 year: 2007 ident: 146_CR14 publication-title: SIAM J. Sci. Comput. doi: 10.1137/05064607X – volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems year: 1996 ident: 146_CR23 doi: 10.1007/978-3-642-05221-7 – volume: 7 start-page: 856 year: 1986 ident: 146_CR38 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – volume: 33 start-page: 2421 issue: 5 year: 2011 ident: 146_CR27 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090754340 – volume: 125 start-page: 131 issue: 1 year: 2000 ident: 146_CR34 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00464-7 – volume: 103 start-page: 19314 issue: 51 year: 2006 ident: 146_CR36 publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0605166103 – volume-title: Introduction to Numerical Analysis year: 1992 ident: 146_CR39 – volume: 38 start-page: 368 issue: 3 year: 2009 ident: 146_CR15 publication-title: J. Sci. Comput. doi: 10.1007/s10915-008-9245-1 – volume-title: Solving Nonlinear Equations with Newton’s Method year: 2003 ident: 146_CR29 doi: 10.1137/1.9780898718898 – volume: 44 start-page: 139 year: 2003 ident: 146_CR30 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(02)00138-1 – volume: 193 start-page: 357 issue: 2 year: 2004 ident: 146_CR31 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.08.010 – volume: 79 start-page: 761 issue: 270 year: 2010 ident: 146_CR11 publication-title: Math. Comput. doi: 10.1090/S0025-5718-09-02276-5 – volume: 28 start-page: 1071 year: 1991 ident: 146_CR17 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0728057 – volume-title: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods year: 1989 ident: 146_CR20 doi: 10.1007/BFb0093947 – volume-title: Spectral Methods in Fluid Dynamics year: 1988 ident: 146_CR8 doi: 10.1007/978-3-642-84108-8 – volume-title: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods year: 1994 ident: 146_CR4 doi: 10.1137/1.9781611971538 – volume: 12 start-page: 565 year: 1996 ident: 146_CR10 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I – volume: 7 start-page: 105 issue: 1 year: 2012 ident: 146_CR13 publication-title: Commun. Appl. Math. Comput. Sci. doi: 10.2140/camcos.2012.7.105 – volume: 73 start-page: 325 year: 1987 ident: 146_CR18 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90140-9 – volume: 265 start-page: 156 year: 2014 ident: 146_CR6 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.001 – volume: 221 start-page: 739 issue: 2 year: 2007 ident: 146_CR25 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.06.040 – volume-title: An Introduction to Numerical Analysis year: 1989 ident: 146_CR2 – volume: 50 start-page: 67 issue: 1 year: 2008 ident: 146_CR40 publication-title: SIAM Rev. doi: 10.1137/060659831 – volume: 36 start-page: 135 year: 2004 ident: 146_CR3 publication-title: Numer. Algorithms doi: 10.1023/B:NUMA.0000033129.73715.7f – volume: 40 start-page: 241 issue: 2 year: 2000 ident: 146_CR12 publication-title: BIT Numer. Math. doi: 10.1023/A:1022338906936 – volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations year: 2002 ident: 146_CR21 doi: 10.1007/978-3-662-05018-7 – volume-title: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations year: 1998 ident: 146_CR1 doi: 10.1137/1.9781611971392 – volume: 34 start-page: A1296 issue: 3 year: 2012 ident: 146_CR32 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100810216 – ident: 146_CR37 |
| SSID | ssj0009892 |
| Score | 2.2191827 |
| Snippet | Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 484 |
| SubjectTerms | Algorithms Approximation Boundary value problems Collocation Computational Mathematics and Numerical Analysis Convergence Differential equations Error correction Error reduction Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical analysis Numerical integration Numerical methods Ordinary differential equations Physical properties Simulation Theoretical Time dependence Time integration |
| SummonAdditionalLinks | – databaseName: Springer Nature - Connect here FIRST to enable access dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHeAAlEWUTXPgwCJLcWI7yRGVVnCgILGotyiLLSFVDWrSfj924hBAgAQHn-JYjseO33jG7wGcJFRRVzmMMBkHhPFQkSTLGImTjEmeeEIktdiEPxwGo1F4b-9xF022exOSrP7UHy67hdQkmpnCBAkXYZkbshnjoj88t0y7QaWErFcPJxorsyaU-V0TnzejFmF-CYpWe81g41-93IR1Cy3xsp4LHViQky1Yu33nZS22oGOXcoGnlm_6bBvmlzic1YGbMQ6aZC3UaBZvLJmE7gFeGUraqcywZwQ9qusQeFvpTxdY5viQj-cSTdoI3hk6TzRHEnl9IIgDjYytTliBucK7q36xA0-D_mPvmlg5BpJ6VJTEd4US3He5l-pdTVGhHWsNp0IaOKl24uIq6OfHPEgcHtMgViyg0hfKzfyECaW8XVia5BO5B8i1H5UwE-FMA-Y6fuwoRT09P6QjszgTXXAau0Sp5So3khnjqGVZNuMcOVVhIgq7cP7-ymtN1PFb5cPG2JFds0Xk6i_xqKcBZBcuGuO2j39sbP9PtQ9gVWMuUecQHsJSOZ3JI1hJ5-VLMT2upvIb2evsAA priority: 102 providerName: Springer Nature |
| Title | A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs |
| URI | https://link.springer.com/article/10.1007/s10915-015-0146-9 https://www.proquest.com/docview/2918313143 |
| Volume | 68 |
| WOSCitedRecordID | wos000379329500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R4NALb8SWh-bQA1BZxIntJKeKwq7ogWXFo0JcojxsCWm1gc2yv7_jxCECCS4c7EsSy9GMPeOZ8fcB_My44b7xBBM6jZiQsWFZUQiWZoXQMguUyhqyiXA4jO7v45ELuFWurLLdE-uNuihzGyM_8WNSPh6Qef_99Mwsa5TNrjoKjW-wxH3ahG1SNmQd6G5UkyLTQpKM3GbRZjWbq3Mxt2VrtgnF4rd2qXM23-VHa7MzWP3qhNdgxTmceNpoyDos6MkGrLslXeGhw50-2oT5KQ5fmgTOGAdt0RaSV4t_HagETRHPLTTtVBd4Zok96msReFnzUFc4K_GmHM812vIRvLKwnmhDE2UTGMQBeciOL6zC0uDVeb_agrtB__bsgjlaBpYHXM1Y6CujZOjLICfrZriiAza5VfS7Xk6HubRO_oWpjDJPpjxKjYi4DpXxizATyphgGxYn5UTvAEo6T2XCZjrzSPhemHrG8ID0RHu6SAvVA68VSpI7zHJLnTFOOrRlK8fEq5tQSdyD49dPnhrAjs9e3mtll7i1WyWd4Hrwq5V-9_jDwX58PtgufCdnSzXFg3uwOJu-6H1Yzuezx2p6AEt_-sPR9UGtwNSP5AP11zf__gP3t_Vi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCqXlkerLlA6B5AoldU4sZ3kUFWIZcUKWJAACXFJ87AlpNUGNstW_Cl-I-M8iKgENw49-JTEUpJvxjOe8fcBbCbccNc4ggkdB0zI0LAkywSLk0xomXhKJZXYhD8YBJeX4ekMPDRnYWxbZeMTS0ed5andI__phgQ-7tHy_vvmllnVKFtdbSQ0Klgc6vu_lLIVv_pd-r9brtvbP987YLWqAEs9ribMd5VR0nell5JzNlxRfkhRAU3vpJSLxGXtyo9lkDgy5kFsRMC1r4yb-YlQxng07zuYE8J1rGLCqbxqSX6DUoSZDFcyCtNFU0WtjuqF3LbJ2SEUC5-vg21w-089tlzmeh__tw-0CB_qgBp3KwtYghk9Woal2mUVuF3zan9fgekuDu6qAtUQe01TGlLUjv2aNIM-CXYt9e5YZ7hnhUvKYx94XOpsFzjJ8SwfTjXa9hg8sbSlaLde8mrjE3uUAdR6aAXmBk-6-8UnuHiT9_8Ms6N8pL8ASsoXE2EruWlAePFjxxjukR1oR2dxpjrgNCCI0pqT3UqDDKOWTdriJnLKIVQUdmDn6ZGbipDktZvXG6xEtW8qohYoHfjRoK29_OJkq69P9g3eH5wfH0VH_cHhGixQYKmqRsl1mJ2M7_RXmE-nk-tivFEaDcKftwbhI-FLSk0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7POXjwQbBp07Q9imtxUVfxhbfSRwLCspVt3d9v0qa7KiqIh5yahrTJMN9kJt8HsJ9QSW1pMcJE7BPmBpIkWcZInGRMuInDeVKLTXjdrv_8HNwandOiqXZvUpL1nQbN0tQvT14zefLh4ltAddGZboyTYBKmmQpkdE3X3f3TmHXXr1SRlSW5ROFm1qQ1vxvis2Mao80vCdLK74SL_57xEiwYyImn9R5ZhgnRX4H56xFfa7ECy8bECzwwPNSHqzA8xe5bndDpYdgUcaFCudgxJBNqNtjWVLUDkeGZFvqorkngdaVLXWCZ433eGwrU5SR4o2k-UR9V5PVBIYYKMRv9sAJziTft82INHsPzh7MLYmQaSOpQXhLP5pK7nu06qfJ2knIVcCuYFVDfSlVwF1fJQC92_cRyY-rHkvlUeFzamZcwLqWzDlP9vC82AF0VXyVMZz5Tn9mWF1tSUkftG2GJLM54C6xmjaLUcJhrKY1eNGZf1v85sqrGeBS04Gj0ymtN4PFb5-1m4SNjy0Vkqy9xqKOAZQuOm4UeP_5xsM0_9d6D2dt2GF11updbMKdgGa_LDLdhqhy8iR2YSYflSzHYrXb4OxGd98g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Numerical+Framework+for+Integrating+Deferred+Correction+Methods+to+Solve+High+Order+Collocation+Formulations+of+ODEs&rft.jtitle=Journal+of+scientific+computing&rft.au=Qu%2C+Wenzhen&rft.au=Brandon%2C+Namdi&rft.au=Chen%2C+Dangxing&rft.au=Huang%2C+Jingfang&rft.date=2016-08-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=68&rft.issue=2&rft.spage=484&rft.epage=520&rft_id=info:doi/10.1007%2Fs10915-015-0146-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_015_0146_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |