A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs

Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 68; no. 2; pp. 484 - 520
Main Authors: Qu, Wenzhen, Brandon, Namdi, Chen, Dangxing, Huang, Jingfang, Kress, Tyler
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2016
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size Δ t varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations.
AbstractList Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size Δ t varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations.
Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size Δt varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations.
Author Chen, Dangxing
Huang, Jingfang
Brandon, Namdi
Qu, Wenzhen
Kress, Tyler
Author_xml – sequence: 1
  givenname: Wenzhen
  surname: Qu
  fullname: Qu, Wenzhen
  organization: Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University
– sequence: 2
  givenname: Namdi
  surname: Brandon
  fullname: Brandon, Namdi
  organization: Department of Mathematics, University of North Carolina
– sequence: 3
  givenname: Dangxing
  surname: Chen
  fullname: Chen, Dangxing
  organization: Department of Mathematics, University of North Carolina
– sequence: 4
  givenname: Jingfang
  surname: Huang
  fullname: Huang, Jingfang
  email: huang@email.unc.edu
  organization: Department of Mathematics, University of North Carolina
– sequence: 5
  givenname: Tyler
  surname: Kress
  fullname: Kress, Tyler
  organization: Department of Mathematics, University of North Carolina
BookMark eNp9kDtPwzAQgC1UJNrCD2CzxBywHceOx6oPWqnQAZgjN7XTlCQuZ7eIf09IkZCQYDjdDd93rwHqNa4xCF1TcksJkXeeEkWTiHTBRaTOUJ8mMo6kULSH-iRNk0hyyS_QwPsdIUSlivXRcYQfD7WBMtcVnoGuzbuDV2wd4EUTTAE6lE2BJ8YaALPBY9emPJSuwQ8mbN3G4-Dwk6uOBs_LYotXsDHQYlXlct1xMwf1oepqj53Fq8nUX6Jzqytvrr7zEL3Mps_jebRc3S_Go2WUx1SESDJhRSJZEueEMkuFUIQJrmhKcsaVbi-PldRJuiaJpqm2PKVGCss2cs2FtfEQ3Zz67sG9HYwP2c4doGlHZqztEtOY8ril5InKwXkPxmZ5GbqFA-iyyijJvp6cnZ6ckS64yFRr0l_mHspaw8e_Djs5vmWbwsDPTn9Ln_qSj8w
CitedBy_id crossref_primary_10_1137_24M1649800
crossref_primary_10_1007_s10409_025_25309_x
crossref_primary_10_1016_j_apm_2019_02_023
crossref_primary_10_1007_s10915_020_01235_8
crossref_primary_10_1016_j_ijsolstr_2025_113451
crossref_primary_10_1360_CSB_2025_0614
crossref_primary_10_1016_j_camwa_2024_08_025
crossref_primary_10_1016_j_enganabound_2024_105873
crossref_primary_10_1002_nme_5948
crossref_primary_10_1016_j_jcp_2019_01_027
crossref_primary_10_1016_j_aml_2023_108868
crossref_primary_10_1007_s10915_017_0552_2
crossref_primary_10_1137_16M1060078
crossref_primary_10_1137_18M117368X
crossref_primary_10_1016_j_aml_2019_06_010
crossref_primary_10_1016_j_jcp_2018_09_041
crossref_primary_10_1016_j_tafmec_2025_105107
Cites_doi 10.1007/978-3-642-55692-0_5
10.1016/j.jcp.2005.10.004
10.1137/S003614299732098X
10.1137/1.9781611970425
10.1016/j.jcp.2007.09.018
10.1137/1.9781611970944
10.1007/s10543-005-0016-1
10.1090/S0025-5718-2014-02834-2
10.1137/0915088
10.1137/05064607X
10.1007/978-3-642-05221-7
10.1137/0907058
10.1137/090754340
10.1016/S0377-0427(00)00464-7
10.1073/pnas.0605166103
10.1007/s10915-008-9245-1
10.1137/1.9780898718898
10.1016/S0168-9274(02)00138-1
10.1016/j.jcp.2003.08.010
10.1090/S0025-5718-09-02276-5
10.1137/0728057
10.1007/BFb0093947
10.1007/978-3-642-84108-8
10.1137/1.9781611971538
10.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I
10.2140/camcos.2012.7.105
10.1016/0021-9991(87)90140-9
10.1016/j.jcp.2014.02.001
10.1016/j.jcp.2006.06.040
10.1137/060659831
10.1023/B:NUMA.0000033129.73715.7f
10.1023/A:1022338906936
10.1007/978-3-662-05018-7
10.1137/1.9781611971392
10.1137/100810216
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-015-0146-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 520
ExternalDocumentID 10_1007_s10915_015_0146_9
GrantInformation_xml – fundername: National Science Foundation
  grantid: 0941235
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1217080
  funderid: http://dx.doi.org/10.13039/100000086
– fundername: China Scholarship Council
  grantid: 201306710026
  funderid: http://dx.doi.org/10.13039/501100004543
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-726f657253c012f166902649180c249a007397a58b05a18af481e76f2d7b46ff3
IEDL.DBID K7-
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379329500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 01:27:17 EST 2025
Sat Nov 29 01:56:16 EST 2025
Tue Nov 18 22:40:11 EST 2025
Fri Feb 21 02:36:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deferred correction methods
Krylov subspace methods
65M70
Collocation formulations
Preconditioners
65B05
Jacobian-free Newton–Krylov methods
65M12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-726f657253c012f166902649180c249a007397a58b05a18af481e76f2d7b46ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918313143
PQPubID 2043771
PageCount 37
ParticipantIDs proquest_journals_2918313143
crossref_citationtrail_10_1007_s10915_015_0146_9
crossref_primary_10_1007_s10915_015_0146_9
springer_journals_10_1007_s10915_015_0146_9
PublicationCentury 2000
PublicationDate 20160800
2016-8-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 8
  year: 2016
  text: 20160800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)
BrownPHindmarshAPetzoldLUsing Krylov methods in the solution of large-scale differential-algebraic systemsSIAM J. Sci. Comput.19941514671488129862510.1137/09150880812.65060
StoerJBulirschRIntroduction to Numerical Analysis1992BerlinSpringer0771.65002
DuttAGreengardLRokhlinVSpectral deferred correction methods for ordinary differential equationsBIT Numer. Math.2000402241266176573610.1023/A:10223389069360959.65084
Mazzia, F., et al.: Test set for IVP solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers
GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.19912810711080111145410.1137/07280570731.65064
AuzingerWHofstatterHKreuzerWWeinmullerEModified defect correction algorithms for ODEs. Part I: general theoryNumer. Algorithms200436135156206287010.1023/B:NUMA.0000033129.73715.7f1058.65068
HuangJJiaJMinionMAccelerating the convergence of spectral deferred correction methodsJ. Comput. Phys.2006214633656221660710.1016/j.jcp.2005.10.0041094.65066
EmmettMMinionMToward an efficient parallel in time method for partial differential equationsCommun. Appl. Math. Comput. Sci.201271105132297951810.2140/camcos.2012.7.1051248.65106
HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2002BerlinSpringer10.1007/978-3-662-05018-70994.65135
CausleyMChristliebAOngBVan GroningenLMethod of lines transpose: an implicit solution to the wave equationMath. Comput.20148327632786324680810.1090/S0025-5718-2014-02834-21307.65122
ChristliebAOngBQiuJMIntegral deferred correction methods constructed with high order Runge–Kutta integratorsMath. Comput.201079270761783260054210.1090/S0025-5718-09-02276-51209.65073
HairerELubichCRocheMThe Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods1989BerlinSpringer0683.65050
HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067
KnollDKeyesDJacobian-free Newton–Krylov methods: a survey of approaches and applicationsJ. Comput. Phys.20041932357397203047110.1016/j.jcp.2003.08.0101036.65045
KushnirDRokhlinVA highly accurate solver for stiff ordinary differential equationsSIAM J. Sci. Comput.2012343A1296A1315297025310.1137/1008102161246.65103
GanderMJVandewalleSAnalysis of the parareal time-parallel time-integration methodSIAM J. Sci. Comput.2007292556578230625810.1137/05064607X1141.65064
LaytonATMinionMLImplications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equationsBIT Numer. Math.2005452341373217619810.1007/s10543-005-0016-11078.65552
TrefethenLIs Gauss quadrature better than Clenshaw–Curtis?SIAM Rev.20085016787240305810.1137/0606598311141.65018
BarrioROn the a-stability of Runge–Kutta collocation methods based on orthogonal polynomialsSIAM J. Numer. Anal.199936412911303170178810.1137/S003614299732098X0942.65088
CanutoCHussainiMQuarteroniAZangTSpectral Methods in Fluid Dynamics1988BerlinSpringer10.1007/978-3-642-84108-80658.76001
BeylkinGSandbergKOde solvers using band-limited approximationsJ. Comput. Phys.2014265156171317314110.1016/j.jcp.2014.02.001
GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.19877332534891844810.1016/0021-9991(87)90140-90629.65005
KellyCIterative Methods for Linear and Nonlinear Equations1995PhiladelphiaSIAM10.1137/1.9781611970944
JiaJLiuJStable and spectrally accurate schemes for the Navier–Stokes equationsSIAM J. Sci. Comput.201133524212439283753910.1137/0907543401232.65132
BarrettRTemplates for the Solution of Linear Systems: Building Blocks for Iterative Methods19942PhiladelphiaSIAM10.1137/1.9781611971538
SaadYSchultzMGMRES: a generalized minimal residual algorithm for solving non-symmetric linear systemsSIAM J. Sci. Stat. Comput.1986785686984856810.1137/09070580599.65018
JiaJHuangJKrylov deferred correction accelerated method of lines transpose for parabolic problemsJ. Comput. Phys.2008227317391753245097010.1016/j.jcp.2007.09.0181134.65064
HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125
AscherUPetzoldLComputer Methods for Ordinary Differential Equations and Differential-Algebraic Equations1998PhiladelphiaSIAM10.1137/1.97816119713920908.65055
ChenWWangXYuYReducing the computational requirements of the differential quadrature methodNumer. Methods Partial Differ. Equ.199612565577141137310.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I0868.65014
GlaserARokhlinVA new class of highly accurate solvers for ordinary differential equationsJ. Sci. Comput.2009383368399247565710.1007/s10915-008-9245-11203.65102
GottliebDOrszagSNumerical Analysis of Spectral Methods1977PhiladelphiaSIAM10.1137/1.97816119704250412.65058
KennedyCCarpenterMHAdditive Runge–Kutta schemes for convection–diffusion–reaction equationsAppl. Numer. Math.200344139181195129210.1016/S0168-9274(02)00138-11013.65103
HuangJJiaJMinionMArbitrary order Krylov deferred correction methods for differential algebraic equationsJ. Comput. Phys.20072212739760229314810.1016/j.jcp.2006.06.0401110.65076
KellyCSolving Nonlinear Equations with Newton’s Method2003PhiladelphiaSIAM10.1137/1.9780898718898
LionsJMadayYTuriniciGA “parareal” in time discretization of PDE’sComptes Rendus de l’Academie des Sciences Series I Mathematics2001332766166818424650984.65085
AtkinsonKAn Introduction to Numerical Analysis19892HobokenWiley0718.65001
LiSPetzoldLSoftware and algorithms for sensitivity analysis of large-scale differential algebraic systemsJ. Comput. Appl. Math.20001251131145180318710.1016/S0377-0427(00)00464-70971.65074
LuBXiaolinCHuangJMcCammonAOrder N algorithm for computation of electrostatic interactions in biomolecular systemsProc. Nat. Acad. Sci.200610351193141931910.1073/pnas.0605166103
E Hairer (146_CR20) 1989
J Huang (146_CR24) 2006; 214
146_CR37
J Jia (146_CR26) 2008; 227
MJ Gander (146_CR14) 2007; 29
A Christlieb (146_CR11) 2010; 79
AT Layton (146_CR33) 2005; 45
G Beylkin (146_CR6) 2014; 265
C Kelly (146_CR28) 1995
A Dutt (146_CR12) 2000; 40
E Hairer (146_CR21) 2002
M Emmett (146_CR13) 2012; 7
S Li (146_CR34) 2000; 125
M Causley (146_CR9) 2014; 83
E Hairer (146_CR23) 1996
A Glaser (146_CR15) 2009; 38
R Barrett (146_CR4) 1994
D Knoll (146_CR31) 2004; 193
R Barrio (146_CR5) 1999; 36
D Gottlieb (146_CR16) 1977
L Greengard (146_CR18) 1987; 73
L Greengard (146_CR17) 1991; 28
J Stoer (146_CR39) 1992
C Canuto (146_CR8) 1988
J Jia (146_CR27) 2011; 33
B Lu (146_CR36) 2006; 103
W Chen (146_CR10) 1996; 12
P Brown (146_CR7) 1994; 15
J Huang (146_CR25) 2007; 221
L Trefethen (146_CR40) 2008; 50
W Auzinger (146_CR3) 2004; 36
J Lions (146_CR35) 2001; 332
C Kelly (146_CR29) 2003
Y Saad (146_CR38) 1986; 7
C Kennedy (146_CR30) 2003; 44
D Kushnir (146_CR32) 2012; 34
146_CR19
U Ascher (146_CR1) 1998
K Atkinson (146_CR2) 1989
E Hairer (146_CR22) 2006
References_xml – reference: BrownPHindmarshAPetzoldLUsing Krylov methods in the solution of large-scale differential-algebraic systemsSIAM J. Sci. Comput.19941514671488129862510.1137/09150880812.65060
– reference: AuzingerWHofstatterHKreuzerWWeinmullerEModified defect correction algorithms for ODEs. Part I: general theoryNumer. Algorithms200436135156206287010.1023/B:NUMA.0000033129.73715.7f1058.65068
– reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067
– reference: Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)
– reference: HuangJJiaJMinionMAccelerating the convergence of spectral deferred correction methodsJ. Comput. Phys.2006214633656221660710.1016/j.jcp.2005.10.0041094.65066
– reference: KellyCIterative Methods for Linear and Nonlinear Equations1995PhiladelphiaSIAM10.1137/1.9781611970944
– reference: LiSPetzoldLSoftware and algorithms for sensitivity analysis of large-scale differential algebraic systemsJ. Comput. Appl. Math.20001251131145180318710.1016/S0377-0427(00)00464-70971.65074
– reference: HuangJJiaJMinionMArbitrary order Krylov deferred correction methods for differential algebraic equationsJ. Comput. Phys.20072212739760229314810.1016/j.jcp.2006.06.0401110.65076
– reference: TrefethenLIs Gauss quadrature better than Clenshaw–Curtis?SIAM Rev.20085016787240305810.1137/0606598311141.65018
– reference: ChristliebAOngBQiuJMIntegral deferred correction methods constructed with high order Runge–Kutta integratorsMath. Comput.201079270761783260054210.1090/S0025-5718-09-02276-51209.65073
– reference: GreengardLSpectral integration and two-point boundary value problemsSIAM J. Numer. Anal.19912810711080111145410.1137/07280570731.65064
– reference: KellyCSolving Nonlinear Equations with Newton’s Method2003PhiladelphiaSIAM10.1137/1.9780898718898
– reference: StoerJBulirschRIntroduction to Numerical Analysis1992BerlinSpringer0771.65002
– reference: CausleyMChristliebAOngBVan GroningenLMethod of lines transpose: an implicit solution to the wave equationMath. Comput.20148327632786324680810.1090/S0025-5718-2014-02834-21307.65122
– reference: ChenWWangXYuYReducing the computational requirements of the differential quadrature methodNumer. Methods Partial Differ. Equ.199612565577141137310.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I0868.65014
– reference: LaytonATMinionMLImplications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equationsBIT Numer. Math.2005452341373217619810.1007/s10543-005-0016-11078.65552
– reference: SaadYSchultzMGMRES: a generalized minimal residual algorithm for solving non-symmetric linear systemsSIAM J. Sci. Stat. Comput.1986785686984856810.1137/09070580599.65018
– reference: CanutoCHussainiMQuarteroniAZangTSpectral Methods in Fluid Dynamics1988BerlinSpringer10.1007/978-3-642-84108-80658.76001
– reference: GlaserARokhlinVA new class of highly accurate solvers for ordinary differential equationsJ. Sci. Comput.2009383368399247565710.1007/s10915-008-9245-11203.65102
– reference: EmmettMMinionMToward an efficient parallel in time method for partial differential equationsCommun. Appl. Math. Comput. Sci.201271105132297951810.2140/camcos.2012.7.1051248.65106
– reference: GanderMJVandewalleSAnalysis of the parareal time-parallel time-integration methodSIAM J. Sci. Comput.2007292556578230625810.1137/05064607X1141.65064
– reference: JiaJHuangJKrylov deferred correction accelerated method of lines transpose for parabolic problemsJ. Comput. Phys.2008227317391753245097010.1016/j.jcp.2007.09.0181134.65064
– reference: BarrettRTemplates for the Solution of Linear Systems: Building Blocks for Iterative Methods19942PhiladelphiaSIAM10.1137/1.9781611971538
– reference: HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2006BerlinSpringer1094.65125
– reference: KushnirDRokhlinVA highly accurate solver for stiff ordinary differential equationsSIAM J. Sci. Comput.2012343A1296A1315297025310.1137/1008102161246.65103
– reference: AtkinsonKAn Introduction to Numerical Analysis19892HobokenWiley0718.65001
– reference: AscherUPetzoldLComputer Methods for Ordinary Differential Equations and Differential-Algebraic Equations1998PhiladelphiaSIAM10.1137/1.97816119713920908.65055
– reference: BarrioROn the a-stability of Runge–Kutta collocation methods based on orthogonal polynomialsSIAM J. Numer. Anal.199936412911303170178810.1137/S003614299732098X0942.65088
– reference: GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.19877332534891844810.1016/0021-9991(87)90140-90629.65005
– reference: LuBXiaolinCHuangJMcCammonAOrder N algorithm for computation of electrostatic interactions in biomolecular systemsProc. Nat. Acad. Sci.200610351193141931910.1073/pnas.0605166103
– reference: BeylkinGSandbergKOde solvers using band-limited approximationsJ. Comput. Phys.2014265156171317314110.1016/j.jcp.2014.02.001
– reference: KennedyCCarpenterMHAdditive Runge–Kutta schemes for convection–diffusion–reaction equationsAppl. Numer. Math.200344139181195129210.1016/S0168-9274(02)00138-11013.65103
– reference: DuttAGreengardLRokhlinVSpectral deferred correction methods for ordinary differential equationsBIT Numer. Math.2000402241266176573610.1023/A:10223389069360959.65084
– reference: HairerELubichCWannerGGeometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations2002BerlinSpringer10.1007/978-3-662-05018-70994.65135
– reference: LionsJMadayYTuriniciGA “parareal” in time discretization of PDE’sComptes Rendus de l’Academie des Sciences Series I Mathematics2001332766166818424650984.65085
– reference: Mazzia, F., et al.: Test set for IVP solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers
– reference: KnollDKeyesDJacobian-free Newton–Krylov methods: a survey of approaches and applicationsJ. Comput. Phys.20041932357397203047110.1016/j.jcp.2003.08.0101036.65045
– reference: GottliebDOrszagSNumerical Analysis of Spectral Methods1977PhiladelphiaSIAM10.1137/1.97816119704250412.65058
– reference: HairerELubichCRocheMThe Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods1989BerlinSpringer0683.65050
– reference: JiaJLiuJStable and spectrally accurate schemes for the Navier–Stokes equationsSIAM J. Sci. Comput.201133524212439283753910.1137/0907543401232.65132
– volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: 146_CR22
– ident: 146_CR19
  doi: 10.1007/978-3-642-55692-0_5
– volume: 214
  start-page: 633
  year: 2006
  ident: 146_CR24
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.10.004
– volume: 36
  start-page: 1291
  issue: 4
  year: 1999
  ident: 146_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614299732098X
– volume-title: Numerical Analysis of Spectral Methods
  year: 1977
  ident: 146_CR16
  doi: 10.1137/1.9781611970425
– volume: 227
  start-page: 1739
  issue: 3
  year: 2008
  ident: 146_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.09.018
– volume: 332
  start-page: 661
  issue: 7
  year: 2001
  ident: 146_CR35
  publication-title: Comptes Rendus de l’Academie des Sciences Series I Mathematics
– volume-title: Iterative Methods for Linear and Nonlinear Equations
  year: 1995
  ident: 146_CR28
  doi: 10.1137/1.9781611970944
– volume: 45
  start-page: 341
  issue: 2
  year: 2005
  ident: 146_CR33
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-005-0016-1
– volume: 83
  start-page: 2763
  year: 2014
  ident: 146_CR9
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02834-2
– volume: 15
  start-page: 1467
  year: 1994
  ident: 146_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915088
– volume: 29
  start-page: 556
  issue: 2
  year: 2007
  ident: 146_CR14
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/05064607X
– volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
  year: 1996
  ident: 146_CR23
  doi: 10.1007/978-3-642-05221-7
– volume: 7
  start-page: 856
  year: 1986
  ident: 146_CR38
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– volume: 33
  start-page: 2421
  issue: 5
  year: 2011
  ident: 146_CR27
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090754340
– volume: 125
  start-page: 131
  issue: 1
  year: 2000
  ident: 146_CR34
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00464-7
– volume: 103
  start-page: 19314
  issue: 51
  year: 2006
  ident: 146_CR36
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0605166103
– volume-title: Introduction to Numerical Analysis
  year: 1992
  ident: 146_CR39
– volume: 38
  start-page: 368
  issue: 3
  year: 2009
  ident: 146_CR15
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9245-1
– volume-title: Solving Nonlinear Equations with Newton’s Method
  year: 2003
  ident: 146_CR29
  doi: 10.1137/1.9780898718898
– volume: 44
  start-page: 139
  year: 2003
  ident: 146_CR30
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(02)00138-1
– volume: 193
  start-page: 357
  issue: 2
  year: 2004
  ident: 146_CR31
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.08.010
– volume: 79
  start-page: 761
  issue: 270
  year: 2010
  ident: 146_CR11
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-09-02276-5
– volume: 28
  start-page: 1071
  year: 1991
  ident: 146_CR17
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0728057
– volume-title: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods
  year: 1989
  ident: 146_CR20
  doi: 10.1007/BFb0093947
– volume-title: Spectral Methods in Fluid Dynamics
  year: 1988
  ident: 146_CR8
  doi: 10.1007/978-3-642-84108-8
– volume-title: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
  year: 1994
  ident: 146_CR4
  doi: 10.1137/1.9781611971538
– volume: 12
  start-page: 565
  year: 1996
  ident: 146_CR10
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/(SICI)1098-2426(199609)12:5<565::AID-NUM2>3.0.CO;2-I
– volume: 7
  start-page: 105
  issue: 1
  year: 2012
  ident: 146_CR13
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2012.7.105
– volume: 73
  start-page: 325
  year: 1987
  ident: 146_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90140-9
– volume: 265
  start-page: 156
  year: 2014
  ident: 146_CR6
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.001
– volume: 221
  start-page: 739
  issue: 2
  year: 2007
  ident: 146_CR25
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.06.040
– volume-title: An Introduction to Numerical Analysis
  year: 1989
  ident: 146_CR2
– volume: 50
  start-page: 67
  issue: 1
  year: 2008
  ident: 146_CR40
  publication-title: SIAM Rev.
  doi: 10.1137/060659831
– volume: 36
  start-page: 135
  year: 2004
  ident: 146_CR3
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000033129.73715.7f
– volume: 40
  start-page: 241
  issue: 2
  year: 2000
  ident: 146_CR12
  publication-title: BIT Numer. Math.
  doi: 10.1023/A:1022338906936
– volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
  year: 2002
  ident: 146_CR21
  doi: 10.1007/978-3-662-05018-7
– volume-title: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
  year: 1998
  ident: 146_CR1
  doi: 10.1137/1.9781611971392
– volume: 34
  start-page: A1296
  issue: 3
  year: 2012
  ident: 146_CR32
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100810216
– ident: 146_CR37
SSID ssj0009892
Score 2.2191827
Snippet Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 484
SubjectTerms Algorithms
Approximation
Boundary value problems
Collocation
Computational Mathematics and Numerical Analysis
Convergence
Differential equations
Error correction
Error reduction
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Numerical analysis
Numerical integration
Numerical methods
Ordinary differential equations
Physical properties
Simulation
Theoretical
Time dependence
Time integration
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHeAAlEWUTXPgwCJLcWI7yRGVVnCgILGotyiLLSFVDWrSfj924hBAgAQHn-JYjseO33jG7wGcJFRRVzmMMBkHhPFQkSTLGImTjEmeeEIktdiEPxwGo1F4b-9xF022exOSrP7UHy67hdQkmpnCBAkXYZkbshnjoj88t0y7QaWErFcPJxorsyaU-V0TnzejFmF-CYpWe81g41-93IR1Cy3xsp4LHViQky1Yu33nZS22oGOXcoGnlm_6bBvmlzic1YGbMQ6aZC3UaBZvLJmE7gFeGUraqcywZwQ9qusQeFvpTxdY5viQj-cSTdoI3hk6TzRHEnl9IIgDjYytTliBucK7q36xA0-D_mPvmlg5BpJ6VJTEd4US3He5l-pdTVGhHWsNp0IaOKl24uIq6OfHPEgcHtMgViyg0hfKzfyECaW8XVia5BO5B8i1H5UwE-FMA-Y6fuwoRT09P6QjszgTXXAau0Sp5So3khnjqGVZNuMcOVVhIgq7cP7-ymtN1PFb5cPG2JFds0Xk6i_xqKcBZBcuGuO2j39sbP9PtQ9gVWMuUecQHsJSOZ3JI1hJ5-VLMT2upvIb2evsAA
  priority: 102
  providerName: Springer Nature
Title A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs
URI https://link.springer.com/article/10.1007/s10915-015-0146-9
https://www.proquest.com/docview/2918313143
Volume 68
WOSCitedRecordID wos000379329500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R4NALb8SWh-bQA1BZxIntJKeKwq7ogWXFo0JcojxsCWm1gc2yv7_jxCECCS4c7EsSy9GMPeOZ8fcB_My44b7xBBM6jZiQsWFZUQiWZoXQMguUyhqyiXA4jO7v45ELuFWurLLdE-uNuihzGyM_8WNSPh6Qef_99Mwsa5TNrjoKjW-wxH3ahG1SNmQd6G5UkyLTQpKM3GbRZjWbq3Mxt2VrtgnF4rd2qXM23-VHa7MzWP3qhNdgxTmceNpoyDos6MkGrLslXeGhw50-2oT5KQ5fmgTOGAdt0RaSV4t_HagETRHPLTTtVBd4Zok96msReFnzUFc4K_GmHM812vIRvLKwnmhDE2UTGMQBeciOL6zC0uDVeb_agrtB__bsgjlaBpYHXM1Y6CujZOjLICfrZriiAza5VfS7Xk6HubRO_oWpjDJPpjxKjYi4DpXxizATyphgGxYn5UTvAEo6T2XCZjrzSPhemHrG8ID0RHu6SAvVA68VSpI7zHJLnTFOOrRlK8fEq5tQSdyD49dPnhrAjs9e3mtll7i1WyWd4Hrwq5V-9_jDwX58PtgufCdnSzXFg3uwOJu-6H1Yzuezx2p6AEt_-sPR9UGtwNSP5AP11zf__gP3t_Vi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCqXlkerLlA6B5AoldU4sZ3kUFWIZcUKWJAACXFJ87AlpNUGNstW_Cl-I-M8iKgENw49-JTEUpJvxjOe8fcBbCbccNc4ggkdB0zI0LAkywSLk0xomXhKJZXYhD8YBJeX4ekMPDRnYWxbZeMTS0ed5andI__phgQ-7tHy_vvmllnVKFtdbSQ0Klgc6vu_lLIVv_pd-r9brtvbP987YLWqAEs9ribMd5VR0nell5JzNlxRfkhRAU3vpJSLxGXtyo9lkDgy5kFsRMC1r4yb-YlQxng07zuYE8J1rGLCqbxqSX6DUoSZDFcyCtNFU0WtjuqF3LbJ2SEUC5-vg21w-089tlzmeh__tw-0CB_qgBp3KwtYghk9Woal2mUVuF3zan9fgekuDu6qAtUQe01TGlLUjv2aNIM-CXYt9e5YZ7hnhUvKYx94XOpsFzjJ8SwfTjXa9hg8sbSlaLde8mrjE3uUAdR6aAXmBk-6-8UnuHiT9_8Ms6N8pL8ASsoXE2EruWlAePFjxxjukR1oR2dxpjrgNCCI0pqT3UqDDKOWTdriJnLKIVQUdmDn6ZGbipDktZvXG6xEtW8qohYoHfjRoK29_OJkq69P9g3eH5wfH0VH_cHhGixQYKmqRsl1mJ2M7_RXmE-nk-tivFEaDcKftwbhI-FLSk0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7POXjwQbBp07Q9imtxUVfxhbfSRwLCspVt3d9v0qa7KiqIh5yahrTJMN9kJt8HsJ9QSW1pMcJE7BPmBpIkWcZInGRMuInDeVKLTXjdrv_8HNwandOiqXZvUpL1nQbN0tQvT14zefLh4ltAddGZboyTYBKmmQpkdE3X3f3TmHXXr1SRlSW5ROFm1qQ1vxvis2Mao80vCdLK74SL_57xEiwYyImn9R5ZhgnRX4H56xFfa7ECy8bECzwwPNSHqzA8xe5bndDpYdgUcaFCudgxJBNqNtjWVLUDkeGZFvqorkngdaVLXWCZ433eGwrU5SR4o2k-UR9V5PVBIYYKMRv9sAJziTft82INHsPzh7MLYmQaSOpQXhLP5pK7nu06qfJ2knIVcCuYFVDfSlVwF1fJQC92_cRyY-rHkvlUeFzamZcwLqWzDlP9vC82AF0VXyVMZz5Tn9mWF1tSUkftG2GJLM54C6xmjaLUcJhrKY1eNGZf1v85sqrGeBS04Gj0ymtN4PFb5-1m4SNjy0Vkqy9xqKOAZQuOm4UeP_5xsM0_9d6D2dt2GF11updbMKdgGa_LDLdhqhy8iR2YSYflSzHYrXb4OxGd98g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Numerical+Framework+for+Integrating+Deferred+Correction+Methods+to+Solve+High+Order+Collocation+Formulations+of+ODEs&rft.jtitle=Journal+of+scientific+computing&rft.au=Qu%2C+Wenzhen&rft.au=Brandon%2C+Namdi&rft.au=Chen%2C+Dangxing&rft.au=Huang%2C+Jingfang&rft.date=2016-08-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=68&rft.issue=2&rft.spage=484&rft.epage=520&rft_id=info:doi/10.1007%2Fs10915-015-0146-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_015_0146_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon