Testing and Non-linear Preconditioning of the Proximal Point Method
Employing the ideas of non-linear preconditioning and testing of the classical proximal point method, we formalise common arguments in convergence rate and convergence proofs of optimisation methods to the verification of a simple iteration-wise inequality. When applied to fixed point operators, the...
Saved in:
| Published in: | Applied mathematics & optimization Vol. 82; no. 2; pp. 591 - 636 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0095-4616, 1432-0606 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Employing the ideas of non-linear preconditioning and testing of the classical proximal point method, we formalise common arguments in convergence rate and convergence proofs of optimisation methods to the verification of a simple iteration-wise inequality. When applied to fixed point operators, the latter can be seen as a generalisation of firm non-expansivity or the
α
-averaged property. The main purpose of this work is to provide the abstract background theory for our companion paper “Block-proximal methods with spatially adapted acceleration”. In the present account we demonstrate the effectiveness of the general approach on several classical algorithms, as well as their stochastic variants. Besides, of course, the proximal point method, these method include the gradient descent, forward–backward splitting, Douglas–Rachford splitting, Newton’s method, as well as several methods for saddle-point problems, such as the Alternating Directions Method of Multipliers, and the Chambolle–Pock method. |
|---|---|
| AbstractList | Employing the ideas of non-linear preconditioning and testing of the classical proximal point method, we formalise common arguments in convergence rate and convergence proofs of optimisation methods to the verification of a simple iteration-wise inequality. When applied to fixed point operators, the latter can be seen as a generalisation of firm non-expansivity or the
α
-averaged property. The main purpose of this work is to provide the abstract background theory for our companion paper “Block-proximal methods with spatially adapted acceleration”. In the present account we demonstrate the effectiveness of the general approach on several classical algorithms, as well as their stochastic variants. Besides, of course, the proximal point method, these method include the gradient descent, forward–backward splitting, Douglas–Rachford splitting, Newton’s method, as well as several methods for saddle-point problems, such as the Alternating Directions Method of Multipliers, and the Chambolle–Pock method. Employing the ideas of non-linear preconditioning and testing of the classical proximal point method, we formalise common arguments in convergence rate and convergence proofs of optimisation methods to the verification of a simple iteration-wise inequality. When applied to fixed point operators, the latter can be seen as a generalisation of firm non-expansivity or the α-averaged property. The main purpose of this work is to provide the abstract background theory for our companion paper “Block-proximal methods with spatially adapted acceleration”. In the present account we demonstrate the effectiveness of the general approach on several classical algorithms, as well as their stochastic variants. Besides, of course, the proximal point method, these method include the gradient descent, forward–backward splitting, Douglas–Rachford splitting, Newton’s method, as well as several methods for saddle-point problems, such as the Alternating Directions Method of Multipliers, and the Chambolle–Pock method. |
| Author | Valkonen, Tuomo |
| Author_xml | – sequence: 1 givenname: Tuomo surname: Valkonen fullname: Valkonen, Tuomo email: tuomo.valkonen@iki.fi organization: ModeMat, Escuela Politécnica Nacional, Department of Mathematical Sciences, University of Liverpool |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG8LnqOTZJPdHqX4D6r20HvIZrNtyprUJAX99mZZQRD0NDDzfjNv3gxNnHcGoUsC1wSguokAtOQYSI0XvCRYnKApKRnFIEBM0BRgwXEpiDhDsxj3kOVMsClabkxM1m0L5drixTvcW2dUKNbBaO9am6x3w9h3RdqZ3PYf9k31xdpbl4pnk3a-PUenneqjufiuc7S5v9ssH_Hq9eFpebvCmhGRsOhUTWvVAW9oo0UL0HBgi5J2utK0KYVhpWmopsBUxRuuaqbauhGkFm3FDZujq3HtIfj3Y7Yt9_4YXL4oKWH1ggyvZhUZVTr4GIPp5CFkx-FTEpBDVHKMSuao5BCVHJjqF6NtUsPrKSjb_0vSkYz5itua8OPpb-gL_P9-dg |
| CitedBy_id | crossref_primary_10_1007_s00245_020_09676_1 crossref_primary_10_1137_21M1448112 crossref_primary_10_1007_s10851_024_01214_w crossref_primary_10_1007_s10851_020_01000_4 crossref_primary_10_1007_s10589_024_00587_3 crossref_primary_10_1007_s00245_022_09933_5 crossref_primary_10_1007_s10589_023_00527_7 crossref_primary_10_1088_1361_6420_adcb66 crossref_primary_10_1088_1361_6420_abe4aa |
| Cites_doi | 10.1090/S0002-9904-1967-11761-0 10.1007/s10444-011-9254-8 10.1088/0266-5611/27/12/125007 10.1007/s10851-016-0692-2 10.1016/0022-247X(66)90027-8 10.1007/s10107-015-0969-z 10.1007/s10851-014-0523-2 10.1007/s10107-015-0892-3 10.1007/BF00940051 10.1137/0314056 10.1137/100814494 10.1137/0803026 10.1002/cpa.3160230107 10.1073/pnas.54.4.1041 10.1007/s10851-010-0251-1 10.1090/S0002-9939-1953-0054846-3 10.1137/080716542 10.2307/1993056 10.1007/BF01109805 10.1137/130921428 10.1002/cpa.20042 10.1007/s10957-012-0245-9 10.1016/S0168-2024(08)70034-1 10.1007/978-3-319-48311-5 10.1007/s10107-015-0957-3 10.1007/s10107-015-0901-6 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 88I 8AO 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00245-018-9541-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1432-0606 |
| EndPage | 636 |
| ExternalDocumentID | 10_1007_s00245_018_9541_6 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T9H TH9 TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WHG WJK WK8 YLTOR Z45 Z81 Z8U ZL0 ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7XB 8FK JQ2 L.- MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-6fa828af05b2bc6d00b503942fc7c2b46e34eb2c203a75b5a83ad8b6186d75e3 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566445500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0095-4616 |
| IngestDate | Wed Nov 05 15:02:35 EST 2025 Sat Nov 29 02:47:08 EST 2025 Tue Nov 18 20:15:35 EST 2025 Fri Feb 21 02:26:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 49M29 65K10 65K15 90C30 90C47 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-6fa828af05b2bc6d00b503942fc7c2b46e34eb2c203a75b5a83ad8b6186d75e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2138910606 |
| PQPubID | 47316 |
| PageCount | 46 |
| ParticipantIDs | proquest_journals_2138910606 crossref_primary_10_1007_s00245_018_9541_6 crossref_citationtrail_10_1007_s00245_018_9541_6 springer_journals_10_1007_s00245_018_9541_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20201000 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied mathematics & optimization |
| PublicationTitleAbbrev | Appl Math Optim |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Daubechies, Defrise, De Mol (CR20) 2004; 57 He, Yuan (CR7) 2012; 5 Mann (CR24) 1953; 4 Lee, Sun, Saunders (CR23) 2014; 24 Schaefer (CR25) 1957; 59 Krasnoselski (CR27) 1955; 19 CR15 Douglas Jim, Rachford (CR21) 1956; 82 Shiriyaev (CR28) 1996 Wright (CR11) 2015; 151 CR34 CR33 Rockafellar (CR2) 1976; 14 Loris, Verhoeven (CR4) 2011; 27 Brezis, Crandall, Pazy (CR17) 1970; 23 Petryshyn (CR26) 1966; 14 Chambolle, Pock (CR6) 2011; 40 Browder (CR10) 1965; 54 Censor, Zenios (CR12) 1992; 73 Beck, Teboulle (CR3) 2009; 2 Chen, Teboulle (CR13) 1993; 3 CR5 Martinet (CR1) 1970; 4 CR29 Browder (CR19) 1967; 100 CR9 Opial (CR18) 1967; 73 Vũ (CR32) 2013; 38 CR22 Valkonen, Pock (CR8) 2017; 59 Pilanci, Wainwright (CR30) 2016; 17 Condat (CR31) 2013; 158 Lorenz, Pock (CR14) 2015; 51 Hua, Yamashita (CR16) 2016; 160 9541_CR22 D Lorenz (9541_CR14) 2015; 51 I Daubechies (9541_CR20) 2004; 57 T Valkonen (9541_CR8) 2017; 59 J Douglas Jim (9541_CR21) 1956; 82 RT Rockafellar (9541_CR2) 1976; 14 9541_CR29 FE Browder (9541_CR19) 1967; 100 B Martinet (9541_CR1) 1970; 4 FE Browder (9541_CR10) 1965; 54 W Petryshyn (9541_CR26) 1966; 14 AN Shiriyaev (9541_CR28) 1996 B He (9541_CR7) 2012; 5 Z Opial (9541_CR18) 1967; 73 A Chambolle (9541_CR6) 2011; 40 H Brezis (9541_CR17) 1970; 23 I Loris (9541_CR4) 2011; 27 9541_CR34 MA Krasnoselski (9541_CR27) 1955; 19 9541_CR9 G Chen (9541_CR13) 1993; 3 9541_CR33 9541_CR5 X Hua (9541_CR16) 2016; 160 S Wright (9541_CR11) 2015; 151 L Condat (9541_CR31) 2013; 158 BC Vũ (9541_CR32) 2013; 38 9541_CR15 WR Mann (9541_CR24) 1953; 4 JD Lee (9541_CR23) 2014; 24 A Beck (9541_CR3) 2009; 2 Y Censor (9541_CR12) 1992; 73 M Pilanci (9541_CR30) 2016; 17 H Schaefer (9541_CR25) 1957; 59 |
| References_xml | – volume: 73 start-page: 591 issue: 4 year: 1967 end-page: 597 ident: CR18 article-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11761-0 – ident: CR22 – volume: 38 start-page: 667 issue: 3 year: 2013 end-page: 681 ident: CR32 article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators publication-title: Adv. Comput. Math. doi: 10.1007/s10444-011-9254-8 – volume: 27 start-page: 125,007 issue: 12 year: 2011 ident: CR4 article-title: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/12/125007 – volume: 59 start-page: 394 year: 2017 end-page: 414 ident: CR8 article-title: Acceleration of the PDHGM on partially strongly convex functions publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-016-0692-2 – volume: 14 start-page: 276 issue: 2 year: 1966 end-page: 284 ident: CR26 article-title: Construction of fixed points of demicompact mappings in Hilbert space publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(66)90027-8 – volume: 160 start-page: 1 issue: 1 year: 2016 end-page: 32 ident: CR16 article-title: Block coordinate proximal gradient methods with variable bregman functions for nonsmooth separable optimization publication-title: Math. Program. doi: 10.1007/s10107-015-0969-z – ident: CR33 – volume: 51 start-page: 311 issue: 2 year: 2015 end-page: 325 ident: CR14 article-title: An inertial forward-backward algorithm for monotone inclusions publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-014-0523-2 – volume: 4 start-page: 154 issue: R3 year: 1970 end-page: 158 ident: CR1 article-title: Brève communication. Régularisation d’inéquations variationnelles par approximations successives publication-title: ESAIM – ident: CR29 – volume: 151 start-page: 3 issue: 1 year: 2015 end-page: 34 ident: CR11 article-title: Coordinate descent algorithms publication-title: Math. Progr. doi: 10.1007/s10107-015-0892-3 – year: 1996 ident: CR28 publication-title: Probability. Graduate Texts in Mathematics – volume: 17 start-page: 1 issue: 53 year: 2016 end-page: 38 ident: CR30 article-title: Iterative Hessian sketch: fast and accurate solution approximation for constrained least-squares publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 123 year: 1955 end-page: 127 ident: CR27 article-title: Two remarks about the method of successive approximations publication-title: Uspekhi Mat. Nauk. – volume: 73 start-page: 451 issue: 3 year: 1992 end-page: 464 ident: CR12 article-title: Proximal minimization algorithm withd-functions publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940051 – volume: 14 start-page: 877 issue: 5 year: 1976 end-page: 898 ident: CR2 article-title: Monotone operators and the proximal point algorithm publication-title: SIAM J. Optim. doi: 10.1137/0314056 – volume: 59 start-page: 131 year: 1957 end-page: 140 ident: CR25 article-title: Über die methode sukzessiver approximationen publication-title: Jahresbericht der Deutschen Mathematiker-Vereinigung – volume: 5 start-page: 119 issue: 1 year: 2012 end-page: 149 ident: CR7 article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective publication-title: SIAM J. Imaging Sci. doi: 10.1137/100814494 – volume: 3 start-page: 538 issue: 3 year: 1993 end-page: 543 ident: CR13 article-title: Convergence analysis of a proximal-like minimization algorithm using bregman functions publication-title: SIAM J. Optim. doi: 10.1137/0803026 – ident: CR15 – volume: 23 start-page: 123 issue: 1 year: 1970 end-page: 144 ident: CR17 article-title: Perturbations of nonlinear maximal monotone sets in banach space publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160230107 – volume: 54 start-page: 1041 issue: 4 year: 1965 ident: CR10 article-title: Nonexpansive nonlinear operators in a banach space publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.54.4.1041 – volume: 40 start-page: 120 year: 2011 end-page: 145 ident: CR6 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 4 start-page: 506 issue: 3 year: 1953 end-page: 510 ident: CR24 article-title: Mean value methods in iteration publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0054846-3 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR3 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – ident: CR9 – volume: 82 start-page: 421 issue: 2 year: 1956 end-page: 439 ident: CR21 article-title: On the numerical solution of heat conduction problems in two and three space variables publication-title: Trans. Am. Math. Soc. doi: 10.2307/1993056 – ident: CR34 – volume: 100 start-page: 201 issue: 3 year: 1967 end-page: 225 ident: CR19 article-title: Convergence theorems for sequences of nonlinear operators in banach spaces publication-title: Math. Z. doi: 10.1007/BF01109805 – volume: 24 start-page: 1420 issue: 3 year: 2014 end-page: 1443 ident: CR23 article-title: Proximal Newton-type methods for minimizing composite functions publication-title: SIAM J. Optim. doi: 10.1137/130921428 – ident: CR5 – volume: 57 start-page: 1413 issue: 11 year: 2004 end-page: 1457 ident: CR20 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 158 start-page: 460 issue: 2 year: 2013 end-page: 479 ident: CR31 article-title: A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0245-9 – volume: 3 start-page: 538 issue: 3 year: 1993 ident: 9541_CR13 publication-title: SIAM J. Optim. doi: 10.1137/0803026 – volume-title: Probability. Graduate Texts in Mathematics year: 1996 ident: 9541_CR28 – volume: 24 start-page: 1420 issue: 3 year: 2014 ident: 9541_CR23 publication-title: SIAM J. Optim. doi: 10.1137/130921428 – ident: 9541_CR5 doi: 10.1016/S0168-2024(08)70034-1 – volume: 100 start-page: 201 issue: 3 year: 1967 ident: 9541_CR19 publication-title: Math. Z. doi: 10.1007/BF01109805 – volume: 14 start-page: 877 issue: 5 year: 1976 ident: 9541_CR2 publication-title: SIAM J. Optim. doi: 10.1137/0314056 – ident: 9541_CR29 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 9541_CR3 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 160 start-page: 1 issue: 1 year: 2016 ident: 9541_CR16 publication-title: Math. Program. doi: 10.1007/s10107-015-0969-z – ident: 9541_CR22 doi: 10.1007/978-3-319-48311-5 – volume: 27 start-page: 125,007 issue: 12 year: 2011 ident: 9541_CR4 publication-title: Inverse Probl. doi: 10.1088/0266-5611/27/12/125007 – volume: 54 start-page: 1041 issue: 4 year: 1965 ident: 9541_CR10 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.54.4.1041 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: 9541_CR20 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume: 4 start-page: 506 issue: 3 year: 1953 ident: 9541_CR24 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0054846-3 – volume: 158 start-page: 460 issue: 2 year: 2013 ident: 9541_CR31 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0245-9 – volume: 73 start-page: 591 issue: 4 year: 1967 ident: 9541_CR18 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11761-0 – ident: 9541_CR9 – ident: 9541_CR15 – volume: 17 start-page: 1 issue: 53 year: 2016 ident: 9541_CR30 publication-title: J. Mach. Learn. Res. – volume: 59 start-page: 131 year: 1957 ident: 9541_CR25 publication-title: Jahresbericht der Deutschen Mathematiker-Vereinigung – volume: 59 start-page: 394 year: 2017 ident: 9541_CR8 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-016-0692-2 – volume: 19 start-page: 123 year: 1955 ident: 9541_CR27 publication-title: Uspekhi Mat. Nauk. – volume: 23 start-page: 123 issue: 1 year: 1970 ident: 9541_CR17 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160230107 – volume: 4 start-page: 154 issue: R3 year: 1970 ident: 9541_CR1 publication-title: ESAIM – volume: 51 start-page: 311 issue: 2 year: 2015 ident: 9541_CR14 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-014-0523-2 – volume: 73 start-page: 451 issue: 3 year: 1992 ident: 9541_CR12 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940051 – volume: 82 start-page: 421 issue: 2 year: 1956 ident: 9541_CR21 publication-title: Trans. Am. Math. Soc. doi: 10.2307/1993056 – volume: 151 start-page: 3 issue: 1 year: 2015 ident: 9541_CR11 publication-title: Math. Progr. doi: 10.1007/s10107-015-0892-3 – volume: 5 start-page: 119 issue: 1 year: 2012 ident: 9541_CR7 publication-title: SIAM J. Imaging Sci. doi: 10.1137/100814494 – volume: 38 start-page: 667 issue: 3 year: 2013 ident: 9541_CR32 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-011-9254-8 – ident: 9541_CR33 doi: 10.1007/s10107-015-0957-3 – ident: 9541_CR34 doi: 10.1007/s10107-015-0901-6 – volume: 14 start-page: 276 issue: 2 year: 1966 ident: 9541_CR26 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(66)90027-8 – volume: 40 start-page: 120 year: 2011 ident: 9541_CR6 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 |
| SSID | ssj0002363 |
| Score | 2.3810012 |
| Snippet | Employing the ideas of non-linear preconditioning and testing of the classical proximal point method, we formalise common arguments in convergence rate and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 591 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Control Convergence Fixed points (mathematics) Goal programming Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Methods Numerical and Computational Physics Preconditioning Saddle points Simulation Splitting Systems Theory Theoretical |
| SummonAdditionalLinks | – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHf4vTKT14UgJZmqTtUYbiwY2BY-xW0iSVgrayVvHPN8naTkUFPbbNS8tL8vK-vpfvAZxTzYmiWCJLZIJoRBkSQchQirUKtPG3F9mE07tgNApns2hcn-Mum2z3JiTpLHV72M1FCQ30NQuU0T7iq7DGLNmMhej309b8Er8unxYxRHmfN6HM77r4vBktPcwvQVG319xs_-srd2Crdi29q8Vc2IUVne_B5gfCQXM1bFlay30YTCzFRv7giVx5oyJH1uUUc2_sULLK6n-1XpF6RsrcLt6yJ_OGcZHllTd0tacPYHJzPRncorqoApJ-n1eIp8KALJFilpBEcoVxwrAfUZLKQJKEcu1Tg7Ylwb4IWMJE6AsVJpZWXwVM-4fQyYtcH4FnPF2JiabWxbKFyoUSkTLyIsGSGhvbBdwoN5Y14bite_EYt1TJTlmxUVZslRXzLly0Is8Lto3fGveaEYvrhVfGxAVesYFlXbhsRmj5-MfOjv_U-gQ2iMXdLqmvB51q_qJPYV2-Vlk5P3Pz8R3crdc1 priority: 102 providerName: Springer Nature |
| Title | Testing and Non-linear Preconditioning of the Proximal Point Method |
| URI | https://link.springer.com/article/10.1007/s00245-018-9541-6 https://www.proquest.com/docview/2138910606 |
| Volume | 82 |
| WOSCitedRecordID | wos000566445500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1432-0606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002363 issn: 0095-4616 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4N2AN7gG2AVsZQHva0ycJ1_KN5mkYFmjRaIqgY8BI5toMqQcLaDvHn7-w67YY0XvZykpPYiXL2-c53-j6Aj9xJZjk1xAOZEJ5xQbTqCVJRZ5VDf3teTXhxoobD3uVllscDt2ksq2xtYjDUtjH-jPyAhYwaRX_7y_1P4lmjfHY1UmiswBpu1MIzGKgfVwtLzNLIpJYJwmVXtllNGkBEGfdla7jcBe8S-fe-tHQ2n-RHw7ZzvPm_H_waNqLDmXydz5A38MLVb-HVHzCE2BossFunW9AfeeCN-ibRtU2GTU28I6onSR5iZzuOJ7hJUyXYCy83j-M7fEPejOtZMgiM1NswOj4a9b-RSLVATNqVMyIrjaGXrqgoWWmkpbQUNM04q4wyrOTSpRxjcMNoqpUohe6l2vZKD7ZvlXDpDqzWTe3eQYL-r6HMce94efpybXVmsb8uqeFoeTtA2_9cmAhD7tkwbosFgHJQTYGqKbxqCtmBT4su93MMjuce3mvVUcTlOC2WuujA51ahy9v_HGz3-cHewzrz4Xeo7duD1dnkl_sAL83DbDyd7Ie5uA9rh0fD_Axb3xVBOaB9L9lpkLmX6hxlLq5Rnp1f_AY1uuoe |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH4CigQ9tCxFTMviA1xAFh7HdpIDqioWgWbRHEaIm-XYTjVSm8DMQOFH9T9ie5KZUgluHDhmsaPkPT9_b8n3APaYFdQworEnMsEsZRyrOOE4J9bE1uHtSTXhVTvudpPr67Q3B3_rf2F8WWVtE4OhNqX2MfIjGjJqxOHt7ze32HeN8tnVuoXGRC1a9vGPc9lGx5enTr77lJ6f9U8ucNVVAOuoKcZY5Mp5GSonPKOZFoaQjJMoZTTXsaYZEzZizt3UlEQq5hlXSaRMknleeRNzG7lp5-EDixLhF1QrxlPDT6OqcVvKMRNNUSdRSeAspcxXyTnrwlkTi-fb4Azb_peODbvc-ed39n1W4FMFp9GPif6vwpwt1uDjPySL7qgzZaYdrcNJ39OKFD-RKgzqlgX2MFsNUS9EBsygik-jMkdulDtdPgx-uyf0ykExRp3Qb_sL9N_ilTZgoSgLuwnIoXtNqGUeVvrm7Mqo1LjxKiOauX2lAaQWq9QVybrv9fFLTumhgyZIpwnSa4IUDTiYDrmZMIy8dvNWLX1ZGZuRnIm-AYe1_swuvzjZ19cn24Wli36nLduX3dY3WKY-0BCqGLdgYTy8s9uwqO_Hg9FwJywDBPKN1eoJMGM91g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4TgULqAGFqoD-VCZdXj2M7kgBBdRq3aRhEaVb1Zju2gkSApM8P20_h3PGeSmbZSe-uBYxY7Svz57fkewI7wijvBLA1EJlQkQlIT9yUtmHexR3t7Vk14cRanaf_yMsmW4G_7L0woq2xlYi2oXWVDjHyP1xk1hvb2XtGURWSHg49X32noIBUyrW07jRlETv2fX-i-TT6cHOJav-N8cDQ8OKZNhwFqo56aUlUY9DhMwWTOc6scY7lkUSJ4YWPLc6F8JND1tJxFJpa5NP3IuH4eOOZdLH2E0z6C5ThCn6cDy_tHafZ5rgZ41LRxSyQVqqfalCqrGUy5CDVzKGuk6FF1UykuLN1bydla5w2e_8dfaxVWGkObfJrtjDVY8uU6PLtGv4hH53PO2skGHAwD4Uj5hZjSkbQqaTDAzZhkdczAjZrINakKgqPwdPV79A2fkFWjckrO607cL2D4EK_0EjplVfpXQNDut4x7EQzO0LbdOJM4HG9yZgVqnC6wdom1bejXQxeQr3pOHF2jQiMqdECFVl14Px9yNeMeue_mrRYJuhFDE72AQRd2WywtLt852ev7J9uGJ4gmfXaSnm7CUx4iEHV54xZ0puMf_g08tj-no8n4bbMnCOgHxtU_gA9IKA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+and+Non-linear+Preconditioning+of+the+Proximal+Point+Method&rft.jtitle=Applied+mathematics+%26+optimization&rft.au=Valkonen%2C+Tuomo&rft.date=2020-10-01&rft.issn=0095-4616&rft.eissn=1432-0606&rft.volume=82&rft.issue=2&rft.spage=591&rft.epage=636&rft_id=info:doi/10.1007%2Fs00245-018-9541-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00245_018_9541_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-4616&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-4616&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-4616&client=summon |