The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain

In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a di...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Lobachevskii journal of mathematics Ročník 43; číslo 1; s. 199 - 206
Hlavní autori: Ergashev, T. G., Tulakova, Z. R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.01.2022
Springer Nature B.V
Predmet:
ISSN:1995-0802, 1818-9962
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a differentiation formula, some adjacent and limiting relations for the Lauricella hypergeometric functions and the values of some multidimensional improper integrals are used.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080222040102