The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain
In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a di...
Uloženo v:
| Vydáno v: | Lobachevskii journal of mathematics Ročník 43; číslo 1; s. 199 - 206 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.01.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1995-0802, 1818-9962 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a differentiation formula, some adjacent and limiting relations for the Lauricella hypergeometric functions and the values of some multidimensional improper integrals are used. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1995-0802 1818-9962 |
| DOI: | 10.1134/S1995080222040102 |