The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain

In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Lobachevskii journal of mathematics Ročník 43; číslo 1; s. 199 - 206
Hlavní autoři: Ergashev, T. G., Tulakova, Z. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2022
Springer Nature B.V
Témata:
ISSN:1995-0802, 1818-9962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a differentiation formula, some adjacent and limiting relations for the Lauricella hypergeometric functions and the values of some multidimensional improper integrals are used.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080222040102