The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain

In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Lobachevskii journal of mathematics Ročník 43; číslo 1; s. 199 - 206
Hlavní autoři: Ergashev, T. G., Tulakova, Z. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.01.2022
Springer Nature B.V
Témata:
ISSN:1995-0802, 1818-9962
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a differentiation formula, some adjacent and limiting relations for the Lauricella hypergeometric functions and the values of some multidimensional improper integrals are used.
AbstractList In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the method of the integral energy, the uniqueness of solution is proved. In proof of existence of the explicit solution of the Neumann problem a differentiation formula, some adjacent and limiting relations for the Lauricella hypergeometric functions and the values of some multidimensional improper integrals are used.
Author Ergashev, T. G.
Tulakova, Z. R.
Author_xml – sequence: 1
  givenname: T. G.
  surname: Ergashev
  fullname: Ergashev, T. G.
  email: ergashev.tukhtasin@gmail.com
  organization: Tashkent Institute of Irrigation and Agricultural Mechanization Engineers
– sequence: 2
  givenname: Z. R.
  surname: Tulakova
  fullname: Tulakova, Z. R.
  email: ziyodacoders@gmail.com
  organization: Ferghana branch of the Tashkent University of Information Technologies
BookMark eNp9kEtPAyEUhYmpiW31B7gjcT0KlGGGpalVm9RH0rqe0BloaRhogdH476XWxESjK24457uPMwA966wE4ByjS4xH9GqOOc9RiQghiCKMyBHo4xKXGeeM9FKd5Gyvn4BBCBuUjIyxPugWawkfZdcKa-Gzd0sjW6ichwI-dCbqRrfSBu2sMHBijN5GXcPJrhMx_cE3HddwLl-lT_Jc21VnhIdjJ5XStZY2BqgtFBZOrdJWRwlvXCu0PQXHSpggz77eIXi5nSzG99ns6W46vp5l9QizmLElzUe0KRVShNBa8qIpGSIFLvNiSRnmCDWcYCxIgxpZCJVTlSNaC8KasuB0NAQXh75b73adDLHauM6nW0JFWE4QR5Tw5MIHV-1dCF6qaut1K_x7hVG1T7f6lW5iih9MreNnKNELbf4lyYEMaYpdSf-909_QB436jkA
CitedBy_id crossref_primary_10_1134_S1995080222140128
crossref_primary_10_1134_S1995080224600250
crossref_primary_10_1051_e3sconf_202450804006
crossref_primary_10_1134_S1995080223030022
crossref_primary_10_1134_S1995080224600742
crossref_primary_10_1134_S1995080222110294
Cites_doi 10.3103/S1066369X15060067
10.1134/S1995080220010047
10.1134/S1995080220010084
10.1134/S1995080220060062
10.1134/S0012266120070046
10.1007/s11202-007-0072-7
10.17516/1997-1397-2020-13-1-48-57
10.3103/S1066369X11050069
10.1134/S1995080221030124
10.1007/s10625-006-0015-2
10.1134/S1995080221030239
10.3103/S1066369X11010051
10.1007/s10625-005-0298-8
10.1134/S1995080220060086
10.1070/IM8401
10.1134/S0001434609110133
10.3103/S1066369X21070082
10.3103/S1066369X16060074
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022
Pleiades Publishing, Ltd. 2022.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022
– notice: Pleiades Publishing, Ltd. 2022.
DBID AAYXX
CITATION
DOI 10.1134/S1995080222040102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 206
ExternalDocumentID 10_1134_S1995080222040102
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~9
-~C
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
OVT
ID FETCH-LOGICAL-c316t-6b4534d8f0f224ce97d860271857b461900d9211a2d0de7af54f504ca26d87943
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788307200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1995-0802
IngestDate Thu Sep 18 00:00:51 EDT 2025
Tue Nov 18 22:27:48 EST 2025
Sat Nov 29 05:39:36 EST 2025
Fri Feb 21 02:46:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neumann problem
Lauricella hypergeometric function of many variables
adjacent and limiting relations
multidimensional elliptic equations with several singular coefficients
multidimensional improper integrals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6b4534d8f0f224ce97d860271857b461900d9211a2d0de7af54f504ca26d87943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2652090429
PQPubID 2044393
PageCount 8
ParticipantIDs proquest_journals_2652090429
crossref_primary_10_1134_S1995080222040102
crossref_citationtrail_10_1134_S1995080222040102
springer_journals_10_1134_S1995080222040102
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References BerdyshevA. S.RyskanA. R.The Neumann and Dirichlet problems for one four-dimensional degenerate equationLobachevskii J. Math.20204110511066413593610.1134/S1995080220060062
GradshteynI. S.RyzhikI. M.Table of Integrals, Series and Products2007AmsterdamAcademic1208.65001
BersL.Mathematical Aspects of Subsonic and Transonic Gas Dynamics1958New YorkWiley0083.20501
ErgashevT. G.Potentials for three-dimensional singular elliptic equation and their application to the solving a mixed problemLobachevskii J. Math.20204110671077413593710.1134/S1995080220060086
ErgashevT. G.Fundamental solutions of the generalized Helmholtz equation with several singular coefficients and confluent hypergeometric functions of many variablesLobachevskii J. Math.2020411526413105210.1134/S1995080220010047
MoiseevE. I.MogimiM.On the completeness of eigenfunctions of the Tricomi problem for a degenerate equation of mixed typeDiffer. Equat.20054114621466224146310.1007/s10625-005-0298-8
K. B. Sabitov and I. A. Khadzhi, ‘‘The boundary-value problem for the Lavrent’ev–Bitsadze equation with unknown right-hand side,’’ Russ. Math. (Iz. VUZ) 55 (5), 35–42 (2011).
M. S. Salakhitdinov and B. I. Islomov, ‘‘A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy, ’’ Russ. Math. (Iz. VUZ) 55 (1), 42–49 (2011).
SalakhitdinovM. S.MirsaburovM.A problem with a nonlocal boundary condition on the characteristic for a class of equations of mixed typeMath. Notes200986704715264134810.1134/S0001434609110133
MoiseevE. I.MogimiM.On the completeness of eigenfunctions of the Neumann–Tricomi problem for a degenerate equation of mixed typeDiffer. Equat.20054117891791224402810.1007/s10625-006-0015-2
M. S. Salakhitdinov and N. B. Islamov, ‘‘Nonlocal boundary-value problem with Bitsadze–Samarskii condition for equation of parabolic-hyperbolic type of the second kind,’’ Russ. Math. (Iz. VUZ) 59 (6), 34–42 (2015).
SrivastavaH. M.KarlssonP. W.Multiple Gaussian Hypergeometric Series1985ChichesterHalsted, Ellis Horwood0552.33001
FranklF. I.Selected Works on the Gas Dynamics1973MoscowNauka
ErgashevT. G.Generalized Holmgren problem for an elliptic equation with several singular coefficientsDiffer. Equat.202056842856413688610.1134/S0012266120070046
SalakhitdinovM. S.HasanovA.To the theory of multidimensional Gellerstedt equationUzb. Matem. Zh.200739510925691481189.35185
YuldashevT. K.IslomovB. I.AbdullaevA. A.On solvability of a Poincare–Tricomi type problem for an elliptic-hyperbolic equation of the second kindLobachevskii J. Math.202142663675426024210.1134/S1995080221030239
T. G. Ergashev and Z. R. Tulakova, ‘‘Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain,’’ Russ. Math. (Iz. VUZ) 65 (7), 71–80 (2021).
ErgashevT. G.Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficientsJ. Sib. Fed. Univ. Math. Phys.2020134857407425810.17516/1997-1397-2020-13-1-48-57
KarimovK. T.Nonlocal problem for an elliptic equation with singular coefficients in semi-infinite parallelepipedLobachevskii J. Math.2020414657413105610.1134/S1995080220010084
HasanovA.ErgashevT. G.New decomposition formulas associated with the Lauricella multivariable hypergeometric functionsMont. Taur. J. Pur. Appl. Math.20213317326
K. B. Sabitov and V. A. Novikova, ‘‘Nonlocal A. A. Dezin’s problem for Lavrent’ev–Bitsadze equation,’’ Russ. Math. (Iz. VUZ) 60 (6), 52–62 (2016).
MarichevO. I.Singular boundary value problem for a generalized biaxially symmetric Helmholtz equationDokl. Akad. Nauk SSSR1976230523526422914
MoiseevE. I.MoiseevT. E.KholomeevaA. A.Non-uniqueness of the solution of the internal Neumann–Hellerstedt problem for the Lavrentiev–Bitsadze equationSib. Zh. Chist. Prikl. Mat.20171752571438.35291
ErdelyiA.MagnusW.OberhettingerF.TricomiF. G.Higher Transcendental Functions1953New YorkMcGraw-Hill0051.30303
SalakhitdinovM. S.UrinovA. K.Eigenvalue problems for a mixed-type equation with two singular coefficientsSib. Math. J.20074870771710.1007/s11202-007-0072-7
AppellP.Kampé de FérietJ.Fonctions Hypergéometriques et Hypersphériques: Polynômes d’Hermite1926ParisGauthier-Villars52.0361.13
K. B. Sabitov, ‘‘On the theory of the Frankl problem for equations of mixed type,’’ Russ. Math. (Iz. VUZ) 81 (1), 99–136 (2017).
SalakhitdinovM. S.IslomovB.Boundary value problems for an equation of mixed type with two inner lines of degeneracyDokl. Math.19914323523811133260782.35045
KarimovK. T.Boundary value problems in a semi-infinite parallelepiped for an elliptic equation with three singular coefficientsLobachevskii J. Math.202142560571426023110.1134/S1995080221030124
6678_CR23
K. T. Karimov (6678_CR21) 2021; 42
T. K. Yuldashev (6678_CR14) 2021; 42
P. Appell (6678_CR16) 1926
E. I. Moiseev (6678_CR4) 2005; 41
E. I. Moiseev (6678_CR5) 2017; 17
T. G. Ergashev (6678_CR15) 2020; 13
H. M. Srivastava (6678_CR26) 1985
O. I. Marichev (6678_CR24) 1976; 230
T. G. Ergashev (6678_CR17) 2020; 56
A. Erdelyi (6678_CR25) 1953
T. G. Ergashev (6678_CR29) 2020; 41
A. S. Berdyshev (6678_CR22) 2020; 41
F. I. Frankl (6678_CR2) 1973
T. G. Ergashev (6678_CR18) 2020; 41
M. S. Salakhitdinov (6678_CR9) 1991; 43
6678_CR8
6678_CR7
6678_CR6
6678_CR11
6678_CR10
E. I. Moiseev (6678_CR3) 2005; 41
M. S. Salakhitdinov (6678_CR13) 2007; 48
L. Bers (6678_CR1) 1958
A. Hasanov (6678_CR27) 2021; 3
K. T. Karimov (6678_CR20) 2020; 41
I. S. Gradshteyn (6678_CR28) 2007
M. S. Salakhitdinov (6678_CR19) 2007; 3
M. S. Salakhitdinov (6678_CR12) 2009; 86
References_xml – reference: SalakhitdinovM. S.MirsaburovM.A problem with a nonlocal boundary condition on the characteristic for a class of equations of mixed typeMath. Notes200986704715264134810.1134/S0001434609110133
– reference: AppellP.Kampé de FérietJ.Fonctions Hypergéometriques et Hypersphériques: Polynômes d’Hermite1926ParisGauthier-Villars52.0361.13
– reference: T. G. Ergashev and Z. R. Tulakova, ‘‘Dirichlet problem for an elliptic equation with several singular coefficients in an infinite domain,’’ Russ. Math. (Iz. VUZ) 65 (7), 71–80 (2021).
– reference: HasanovA.ErgashevT. G.New decomposition formulas associated with the Lauricella multivariable hypergeometric functionsMont. Taur. J. Pur. Appl. Math.20213317326
– reference: MarichevO. I.Singular boundary value problem for a generalized biaxially symmetric Helmholtz equationDokl. Akad. Nauk SSSR1976230523526422914
– reference: ErgashevT. G.Fundamental solutions of the generalized Helmholtz equation with several singular coefficients and confluent hypergeometric functions of many variablesLobachevskii J. Math.2020411526413105210.1134/S1995080220010047
– reference: MoiseevE. I.MogimiM.On the completeness of eigenfunctions of the Tricomi problem for a degenerate equation of mixed typeDiffer. Equat.20054114621466224146310.1007/s10625-005-0298-8
– reference: MoiseevE. I.MoiseevT. E.KholomeevaA. A.Non-uniqueness of the solution of the internal Neumann–Hellerstedt problem for the Lavrentiev–Bitsadze equationSib. Zh. Chist. Prikl. Mat.20171752571438.35291
– reference: K. B. Sabitov, ‘‘On the theory of the Frankl problem for equations of mixed type,’’ Russ. Math. (Iz. VUZ) 81 (1), 99–136 (2017).
– reference: MoiseevE. I.MogimiM.On the completeness of eigenfunctions of the Neumann–Tricomi problem for a degenerate equation of mixed typeDiffer. Equat.20054117891791224402810.1007/s10625-006-0015-2
– reference: M. S. Salakhitdinov and B. I. Islomov, ‘‘A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy, ’’ Russ. Math. (Iz. VUZ) 55 (1), 42–49 (2011).
– reference: ErdelyiA.MagnusW.OberhettingerF.TricomiF. G.Higher Transcendental Functions1953New YorkMcGraw-Hill0051.30303
– reference: KarimovK. T.Nonlocal problem for an elliptic equation with singular coefficients in semi-infinite parallelepipedLobachevskii J. Math.2020414657413105610.1134/S1995080220010084
– reference: GradshteynI. S.RyzhikI. M.Table of Integrals, Series and Products2007AmsterdamAcademic1208.65001
– reference: SalakhitdinovM. S.HasanovA.To the theory of multidimensional Gellerstedt equationUzb. Matem. Zh.200739510925691481189.35185
– reference: BerdyshevA. S.RyskanA. R.The Neumann and Dirichlet problems for one four-dimensional degenerate equationLobachevskii J. Math.20204110511066413593610.1134/S1995080220060062
– reference: BersL.Mathematical Aspects of Subsonic and Transonic Gas Dynamics1958New YorkWiley0083.20501
– reference: YuldashevT. K.IslomovB. I.AbdullaevA. A.On solvability of a Poincare–Tricomi type problem for an elliptic-hyperbolic equation of the second kindLobachevskii J. Math.202142663675426024210.1134/S1995080221030239
– reference: SalakhitdinovM. S.UrinovA. K.Eigenvalue problems for a mixed-type equation with two singular coefficientsSib. Math. J.20074870771710.1007/s11202-007-0072-7
– reference: SalakhitdinovM. S.IslomovB.Boundary value problems for an equation of mixed type with two inner lines of degeneracyDokl. Math.19914323523811133260782.35045
– reference: FranklF. I.Selected Works on the Gas Dynamics1973MoscowNauka
– reference: SrivastavaH. M.KarlssonP. W.Multiple Gaussian Hypergeometric Series1985ChichesterHalsted, Ellis Horwood0552.33001
– reference: K. B. Sabitov and V. A. Novikova, ‘‘Nonlocal A. A. Dezin’s problem for Lavrent’ev–Bitsadze equation,’’ Russ. Math. (Iz. VUZ) 60 (6), 52–62 (2016).
– reference: M. S. Salakhitdinov and N. B. Islamov, ‘‘Nonlocal boundary-value problem with Bitsadze–Samarskii condition for equation of parabolic-hyperbolic type of the second kind,’’ Russ. Math. (Iz. VUZ) 59 (6), 34–42 (2015).
– reference: KarimovK. T.Boundary value problems in a semi-infinite parallelepiped for an elliptic equation with three singular coefficientsLobachevskii J. Math.202142560571426023110.1134/S1995080221030124
– reference: ErgashevT. G.Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficientsJ. Sib. Fed. Univ. Math. Phys.2020134857407425810.17516/1997-1397-2020-13-1-48-57
– reference: K. B. Sabitov and I. A. Khadzhi, ‘‘The boundary-value problem for the Lavrent’ev–Bitsadze equation with unknown right-hand side,’’ Russ. Math. (Iz. VUZ) 55 (5), 35–42 (2011).
– reference: ErgashevT. G.Generalized Holmgren problem for an elliptic equation with several singular coefficientsDiffer. Equat.202056842856413688610.1134/S0012266120070046
– reference: ErgashevT. G.Potentials for three-dimensional singular elliptic equation and their application to the solving a mixed problemLobachevskii J. Math.20204110671077413593710.1134/S1995080220060086
– ident: 6678_CR11
  doi: 10.3103/S1066369X15060067
– volume: 3
  start-page: 317
  year: 2021
  ident: 6678_CR27
  publication-title: Mont. Taur. J. Pur. Appl. Math.
– volume: 41
  start-page: 15
  year: 2020
  ident: 6678_CR29
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080220010047
– volume: 41
  start-page: 46
  year: 2020
  ident: 6678_CR20
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080220010084
– volume: 41
  start-page: 1051
  year: 2020
  ident: 6678_CR22
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080220060062
– volume-title: Table of Integrals, Series and Products
  year: 2007
  ident: 6678_CR28
– volume: 56
  start-page: 842
  year: 2020
  ident: 6678_CR17
  publication-title: Differ. Equat.
  doi: 10.1134/S0012266120070046
– volume: 48
  start-page: 707
  year: 2007
  ident: 6678_CR13
  publication-title: Sib. Math. J.
  doi: 10.1007/s11202-007-0072-7
– volume: 13
  start-page: 48
  year: 2020
  ident: 6678_CR15
  publication-title: J. Sib. Fed. Univ. Math. Phys.
  doi: 10.17516/1997-1397-2020-13-1-48-57
– volume-title: Selected Works on the Gas Dynamics
  year: 1973
  ident: 6678_CR2
– volume: 17
  start-page: 52
  year: 2017
  ident: 6678_CR5
  publication-title: Sib. Zh. Chist. Prikl. Mat.
– ident: 6678_CR7
  doi: 10.3103/S1066369X11050069
– volume: 42
  start-page: 560
  year: 2021
  ident: 6678_CR21
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080221030124
– volume: 41
  start-page: 1789
  year: 2005
  ident: 6678_CR4
  publication-title: Differ. Equat.
  doi: 10.1007/s10625-006-0015-2
– volume: 3
  start-page: 95
  year: 2007
  ident: 6678_CR19
  publication-title: Uzb. Matem. Zh.
– volume: 42
  start-page: 663
  year: 2021
  ident: 6678_CR14
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080221030239
– ident: 6678_CR10
  doi: 10.3103/S1066369X11010051
– volume-title: Fonctions Hypergéometriques et Hypersphériques: Polynômes d’Hermite
  year: 1926
  ident: 6678_CR16
– volume-title: Multiple Gaussian Hypergeometric Series
  year: 1985
  ident: 6678_CR26
– volume: 43
  start-page: 235
  year: 1991
  ident: 6678_CR9
  publication-title: Dokl. Math.
– volume-title: Mathematical Aspects of Subsonic and Transonic Gas Dynamics
  year: 1958
  ident: 6678_CR1
– volume: 41
  start-page: 1462
  year: 2005
  ident: 6678_CR3
  publication-title: Differ. Equat.
  doi: 10.1007/s10625-005-0298-8
– volume: 41
  start-page: 1067
  year: 2020
  ident: 6678_CR18
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080220060086
– ident: 6678_CR6
  doi: 10.1070/IM8401
– volume: 86
  start-page: 704
  year: 2009
  ident: 6678_CR12
  publication-title: Math. Notes
  doi: 10.1134/S0001434609110133
– volume: 230
  start-page: 523
  year: 1976
  ident: 6678_CR24
  publication-title: Dokl. Akad. Nauk SSSR
– ident: 6678_CR23
  doi: 10.3103/S1066369X21070082
– ident: 6678_CR8
  doi: 10.3103/S1066369X16060074
– volume-title: Higher Transcendental Functions
  year: 1953
  ident: 6678_CR25
SSID ssj0022666
Score 2.2692285
Snippet In this article the Neumann problem for a multidimensional elliptic equation with several singular coefficients in the infinite domain is studied. Using the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Algebra
Analysis
Domains
Geometry
Hypergeometric functions
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Neumann problem
Probability Theory and Stochastic Processes
Title The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain
URI https://link.springer.com/article/10.1134/S1995080222040102
https://www.proquest.com/docview/2652090429
Volume 43
WOSCitedRecordID wos000788307200015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1818-9962
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022666
  issn: 1995-0802
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6ketCDb7FaZQ6elOA22SS7R6ktCloK1dJbSPYBBU21r9_vziap-AQ9Z7MsmcnO8_uGkDNhjazSXHrap6HHMqa8LA5wiIAx1sOXWUGxMbiLu10-HIpeieOeVt3uVUnS3dTF3BF22UcwsUOG-lbxmkgguRoi2QyG6P3BMsqyFsdBihz0mFO_LGV-u8VHY_TuYX4qijpb09n61ym3yWbpWsJVoQs7ZEXnu2TjfsnLOt0jc6sV0NWYuM-hV8ySAeu2QgoOiauQ67_g6QDs5rD3iYT2a0EHDpizhb5eYBoL-vZU2MIKrbF2NBTYkQGjHNIcbnMzQl8WrsfP6SjfJ4-d9kPrxisHL3gyaEYzL8pYGDDFDTXWwkstYoWjqmLkjcqYDbkoVcJGjqmvqNJxakJmQspk6keKI-PcAanl41wfEohoLAQzWgTc-j4mzLQwXGgeRlryMDV1QisJJLJkJcfhGE-Ji04Clnz5onVyvnzlpaDk-G1xoxJrUv6d08SPsPkHTXGdXFRifH_842ZHf1p9TNZ9xEq4fE2D1GaTuT4ha3IxG00np05p3wD-x-Jx
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6igvrgXZxOPQ8-KcWsTdvkUbwwcY7BVPZW2lxgoJ3u9vvNSduJV9DnpiE0pzmXnO_7CDkW1skqzaWnfRp6LGPKy-IARQSMsRG-zAqKjcdW3G7zXk90Shz3qOp2r64k3Uld6I6wsy6CiR0y1LeG10ACyQWGKjuYoncfZ1mW9TgOUuSgx5z65VXmt1N8dEbvEeanS1Hna67X_rXKdbJahpZwXtjCBpnT-SZZuZvxso62yMRaBbQ1Fu5z6BRaMmDDVkjBIXEVcv0XPB2A3Rz2PJFw9VrQgQPWbKGrp1jGgq5dFbawwsVAOxoK7MiAfg5pDje56WMsC5eD57Sfb5OH66v7i6ZXCi94MmhEYy_KWBgwxQ011sNLLWKFUlUx8kZlzKZclCphM8fUV1TpODUhMyFlMvUjxZFxbofM54Nc7xKIaCwEM1oE3MY-Jsy0MFxoHkZa8jA1NUKrHUhkyUqO4hhPictOApZ8-aI1cjJ75aWg5PhtcL3a1qT8O0eJH2HzD7riGjmttvH98Y-T7f1p9BFZat7ftZLWTft2nyz7iJtwtZs6mR8PJ_qALMrpuD8aHjoDfgOkj-VV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxOPQ8-KcXYpm3yKOpQnGM4Fd9KmwsMNFM3_f3mpO3EK4jPTUNoTnouOd_3EbIrnJNVmstAhzQOWMFUUKQRiggY4yJ8WZQUG7fttNPhd3eiW-mcDutu9_pKssQ0IEuTHR08KlNpkLCDHgKLPUo0dEZ4iGSSU8wlMtjTddW7HWdczvt4eJGHIXMaVtea307x0TG9R5ufLki932kt_HvFi2S-CjnhqLSRJTKh7TKZuxzztQ5XyIuzFuhoLOhb6JYaM-DCWcjBI3QVagCU_B2AXR7uPyPh9KmkCQes5UJPv2J5C3puhdjaCscD7ekpsFMD-hZyC-fW9DHGhZPBQ963q-SmdXp9fBZUggyBjA6TUZAULI6Y4oYa5_mlFqlCCasU-aQK5lIxSpVwGWUeKqp0mpuYmZgymYeJ4shEt0Ym7cDqdQIJTYVgRouIu5jIxIUWhgvN40RLHuemQWi9G5ms2MpRNOM-81lLxLIvX7RB9savPJZUHb8NbtZbnFWndpiFCTYFoYtukP16S98f_zjZxp9G75CZ7kkra593LjbJbIhwCl_SaZLJ0fOL3iLT8nXUHz5ve1t-A_O07jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Neumann+Problem+for+a+Multidimensional+Elliptic+Equation+with+Several+Singular+Coefficients+in+an+Infinite+Domain&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Ergashev%2C+T+G&rft.au=Tulakova%2C+Z+R&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=43&rft.issue=1&rft.spage=199&rft.epage=206&rft_id=info:doi/10.1134%2FS1995080222040102&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon