Massively parallel algorithms for approximate shortest paths

We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take poly ( log log n ) rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with n vertices and m edges. Our fir...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Distributed computing Ročník 38; číslo 2; s. 131 - 162
Hlavní autoři: Dory, Michal, Matar, Shaked
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Témata:
ISSN:0178-2770, 1432-0452
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take poly ( log log n ) rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with n vertices and m edges. Our first contribution is a ( 1 + ϵ ) -approximation algorithm for Single-Source Shortest Paths (SSSP) that takes poly ( log log n ) rounds in the near-linear MPC model, where the memory per machine is O ~ ( n ) and the total memory is O ~ ( m n ρ ) , where ρ is a small constant. Our second contribution is a distance oracle that allows to approximate the distance between any pair of vertices. The distance oracle is constructed in poly ( log log n ) rounds and allows to query a ( 1 + ϵ ) ( 2 k - 1 ) -approximate distance between any pair of vertices u and v in O (1) additional rounds. The algorithm is for the near-linear memory MPC model with total memory of size O ~ ( ( m + n 1 + ρ ) n 1 / k ) , where ρ is a small constant. While our algorithms are for the near-linear MPC model, in fact they only use one machine with O ~ ( n ) memory, where the rest of machines can have sublinear memory of size O ( n γ ) for a small constant γ < 1 . All previous algorithms for approximate shortest paths in the near-linear MPC model either required Ω ( log n ) rounds or had an Ω ( log n ) approximation. Our approach is based on fast construction of near-additive emulators, limited-scale hopsets and limited-scale distance sketches that are tailored for the MPC model. While our end-results are for the near-linear MPC model, many of the tools we construct such as hopsets and emulators are constructed in the more restricted sublinear MPC model.
AbstractList We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take poly(loglogn) rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with n vertices and m edges. Our first contribution is a (1+ϵ)-approximation algorithm for Single-Source Shortest Paths (SSSP) that takes poly(loglogn) rounds in the near-linear MPC model, where the memory per machine is O~(n) and the total memory is O~(mnρ), where ρ is a small constant. Our second contribution is a distance oracle that allows to approximate the distance between any pair of vertices. The distance oracle is constructed in poly(loglogn) rounds and allows to query a (1+ϵ)(2k-1)-approximate distance between any pair of vertices u and v in O(1) additional rounds. The algorithm is for the near-linear memory MPC model with total memory of size O~((m+n1+ρ)n1/k), where ρ is a small constant. While our algorithms are for the near-linear MPC model, in fact they only use one machine with O~(n) memory, where the rest of machines can have sublinear memory of size O(nγ) for a small constant γ<1. All previous algorithms for approximate shortest paths in the near-linear MPC model either required Ω(logn) rounds or had an Ω(logn) approximation. Our approach is based on fast construction of near-additive emulators, limited-scale hopsets and limited-scale distance sketches that are tailored for the MPC model. While our end-results are for the near-linear MPC model, many of the tools we construct such as hopsets and emulators are constructed in the more restricted sublinear MPC model.
We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take poly ( log log n ) rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with n vertices and m edges. Our first contribution is a ( 1 + ϵ ) -approximation algorithm for Single-Source Shortest Paths (SSSP) that takes poly ( log log n ) rounds in the near-linear MPC model, where the memory per machine is O ~ ( n ) and the total memory is O ~ ( m n ρ ) , where ρ is a small constant. Our second contribution is a distance oracle that allows to approximate the distance between any pair of vertices. The distance oracle is constructed in poly ( log log n ) rounds and allows to query a ( 1 + ϵ ) ( 2 k - 1 ) -approximate distance between any pair of vertices u and v in O (1) additional rounds. The algorithm is for the near-linear memory MPC model with total memory of size O ~ ( ( m + n 1 + ρ ) n 1 / k ) , where ρ is a small constant. While our algorithms are for the near-linear MPC model, in fact they only use one machine with O ~ ( n ) memory, where the rest of machines can have sublinear memory of size O ( n γ ) for a small constant γ < 1 . All previous algorithms for approximate shortest paths in the near-linear MPC model either required Ω ( log n ) rounds or had an Ω ( log n ) approximation. Our approach is based on fast construction of near-additive emulators, limited-scale hopsets and limited-scale distance sketches that are tailored for the MPC model. While our end-results are for the near-linear MPC model, many of the tools we construct such as hopsets and emulators are constructed in the more restricted sublinear MPC model.
We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take $$\textrm{poly}(\log {\log {n}})$$ poly ( log log n ) rounds in the near-linear memory MPC model. Our results are for unweighted undirected graphs with n vertices and m edges. Our first contribution is a $$(1+\epsilon )$$ ( 1 + ϵ ) -approximation algorithm for Single-Source Shortest Paths (SSSP) that takes $$\textrm{poly}(\log {\log {n}})$$ poly ( log log n ) rounds in the near-linear MPC model, where the memory per machine is $$\tilde{O}(n)$$ O ~ ( n ) and the total memory is $$\tilde{O}(mn^{\rho })$$ O ~ ( m n ρ ) , where $$\rho $$ ρ is a small constant. Our second contribution is a distance oracle that allows to approximate the distance between any pair of vertices. The distance oracle is constructed in $$\textrm{poly}(\log {\log {n}})$$ poly ( log log n ) rounds and allows to query a $$(1+\epsilon )(2k-1)$$ ( 1 + ϵ ) ( 2 k - 1 ) -approximate distance between any pair of vertices u and v in O (1) additional rounds. The algorithm is for the near-linear memory MPC model with total memory of size $$\tilde{O}((m+n^{1+\rho })n^{1/k})$$ O ~ ( ( m + n 1 + ρ ) n 1 / k ) , where $$\rho $$ ρ is a small constant. While our algorithms are for the near-linear MPC model, in fact they only use one machine with $$\tilde{O}(n)$$ O ~ ( n ) memory, where the rest of machines can have sublinear memory of size $$O(n^{\gamma })$$ O ( n γ ) for a small constant $$\gamma < 1$$ γ < 1 . All previous algorithms for approximate shortest paths in the near-linear MPC model either required $$\Omega (\log {n})$$ Ω ( log n ) rounds or had an $$\Omega (\log {n})$$ Ω ( log n ) approximation. Our approach is based on fast construction of near-additive emulators, limited-scale hopsets and limited-scale distance sketches that are tailored for the MPC model. While our end-results are for the near-linear MPC model, many of the tools we construct such as hopsets and emulators are constructed in the more restricted sublinear MPC model.
Author Matar, Shaked
Dory, Michal
Author_xml – sequence: 1
  givenname: Michal
  surname: Dory
  fullname: Dory, Michal
  email: mdory@ds.haifa.ac.il
  organization: Department of Computer Science, University of Haifa
– sequence: 2
  givenname: Shaked
  surname: Matar
  fullname: Matar, Shaked
  organization: Department of Computer Science, Ben-Gurion University of the Negev
BookMark eNp9kE1LwzAYx4NMcJt-AU8Fz9EnSZuk4EWGTmHiRc8h7ZK90DU1Tyf22xut4M3T8xz-b_xmZNKG1hFyyeCaAagbBMhzSYEXNH2a0-GETFkuOIW84BMyBaY05UrBGZkh7gFAMMan5PbZIu4-XDNknY22aVyT2WYT4q7fHjDzIWa262L43B1s7zLchtg77JO43-I5OfW2QXfxe-fk7eH-dfFIVy_Lp8XditaCyZ5Kq0B5aW3aKKStfFGsrRRO8wIU1KWU3glfldpLXSqndaUt1DVzolhXJQMxJ1djbhryfkz1Zh-OsU2VRnBQKi9B5UnFR1UdA2J03nQxrY6DYWC-KZmRkkmUzA8lMySTGE2YxO3Gxb_of1xfuH1s4Q
Cites_doi 10.1109/FOCS.2019.00096
10.1145/3125644
10.1145/3212734.3212743
10.1145/1044731.1044732
10.1145/3382734.3405737
10.1145/2591796.2591805
10.1145/3188745.3188764
10.1145/3519270.3538450
10.1145/3406325.3451136
10.1145/380752.380797
10.1007/s00446-009-0091-7
10.1145/3527213
10.1137/1.9781611976465.110
10.1145/1109557.1109645
10.1137/16M1105815
10.1145/3274651
10.1145/3519270.3538469
10.1145/3293611.3331635
10.1109/FOCS54457.2022.00078
10.1145/1989493.1989505
10.1145/3357713.3384321
10.1145/3465084.3467928
10.1137/1.9781611975482.98
10.1137/1.9781611975482.99
10.1137/20M1366502
10.1145/3357713.3384268
10.1145/3293611.3331609
10.1007/978-3-642-25591-5_39
10.1145/3409964.3461784
10.1137/1.9781611973075.76
10.1145/3293611.3331607
10.1145/1327452.1327492
10.1145/3465084.3467926
10.1145/1272998.1273005
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jun 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
U9A
DOI 10.1007/s00446-025-00482-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0452
EndPage 162
ExternalDocumentID 10_1007_s00446_025_00482_y
GrantInformation_xml – fundername: University of Haifa
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7RQ
8AO
8FE
8FG
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETEA
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YZZ
Z45
ZCA
ZMTXR
~8M
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
U9A
ID FETCH-LOGICAL-c316t-6a707f6aa04436abf55da63e825070c966fe3fb98f6897e88b8a0cc1e35db9103
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001473381100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2770
IngestDate Tue Dec 02 15:57:03 EST 2025
Sat Nov 29 07:52:46 EST 2025
Sat May 24 01:16:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6a707f6aa04436abf55da63e825070c966fe3fb98f6897e88b8a0cc1e35db9103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00446-025-00482-y
PQID 3207749074
PQPubID 31799
PageCount 32
ParticipantIDs proquest_journals_3207749074
crossref_primary_10_1007_s00446_025_00482_y
springer_journals_10_1007_s00446_025_00482_y
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Distributed computing
PublicationTitleAbbrev Distrib. Comput
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 482_CR17
482_CR18
482_CR15
S Pettie (482_CR35) 2010; 22
482_CR37
482_CR13
482_CR36
482_CR11
482_CR33
482_CR12
482_CR34
A Abboud (482_CR2) 2018; 47
M Zaharia (482_CR39) 2010; 10
482_CR1
482_CR3
482_CR4
482_CR5
M Elkin (482_CR19) 2019; 15
482_CR6
482_CR7
482_CR8
482_CR20
482_CR21
482_CR28
482_CR29
482_CR26
482_CR27
482_CR24
482_CR25
P Beame (482_CR9) 2017; 64
482_CR22
482_CR23
A Czumaj (482_CR10) 2021; 50
M Dory (482_CR16) 2022; 69
T White (482_CR38) 2012
482_CR31
482_CR32
482_CR30
J Dean (482_CR14) 2008; 51
References_xml – ident: 482_CR28
– ident: 482_CR8
  doi: 10.1109/FOCS.2019.00096
– volume: 64
  start-page: 40
  issue: 6
  year: 2017
  ident: 482_CR9
  publication-title: J. ACM (JACM)
  doi: 10.1145/3125644
– ident: 482_CR24
  doi: 10.1145/3212734.3212743
– ident: 482_CR36
  doi: 10.1145/1044731.1044732
– ident: 482_CR25
  doi: 10.1145/3382734.3405737
– ident: 482_CR3
  doi: 10.1145/2591796.2591805
– ident: 482_CR12
  doi: 10.1145/3188745.3188764
– ident: 482_CR23
  doi: 10.1145/3519270.3538450
– ident: 482_CR20
– ident: 482_CR34
  doi: 10.1145/3406325.3451136
– ident: 482_CR21
  doi: 10.1145/380752.380797
– volume: 22
  start-page: 147
  issue: 3
  year: 2010
  ident: 482_CR35
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-009-0091-7
– volume: 69
  start-page: 1
  issue: 4
  year: 2022
  ident: 482_CR16
  publication-title: J. ACM
  doi: 10.1145/3527213
– ident: 482_CR7
  doi: 10.1137/1.9781611976465.110
– ident: 482_CR37
  doi: 10.1145/1109557.1109645
– volume: 47
  start-page: 2203
  issue: 6
  year: 2018
  ident: 482_CR2
  publication-title: SIAM J. Comput.
  doi: 10.1137/16M1105815
– volume: 15
  start-page: 4:1
  issue: 1
  year: 2019
  ident: 482_CR19
  publication-title: ACM Trans. Algorith.
  doi: 10.1145/3274651
– ident: 482_CR22
  doi: 10.1145/3519270.3538469
– ident: 482_CR15
– volume-title: Hadoop: the definitive guide
  year: 2012
  ident: 482_CR38
– ident: 482_CR17
  doi: 10.1145/3293611.3331635
– ident: 482_CR30
  doi: 10.1109/FOCS54457.2022.00078
– ident: 482_CR33
  doi: 10.1145/1989493.1989505
– ident: 482_CR4
  doi: 10.1145/3357713.3384321
– ident: 482_CR13
  doi: 10.1145/3465084.3467928
– ident: 482_CR1
  doi: 10.1137/1.9781611975482.98
– ident: 482_CR27
  doi: 10.1137/1.9781611975482.99
– volume: 50
  start-page: 1603
  issue: 5
  year: 2021
  ident: 482_CR10
  publication-title: SIAM J. Comput.
  doi: 10.1137/20M1366502
– ident: 482_CR32
  doi: 10.1145/3357713.3384268
– volume: 10
  start-page: 95
  issue: 10–10
  year: 2010
  ident: 482_CR39
  publication-title: HotCloud
– ident: 482_CR5
  doi: 10.1145/3293611.3331609
– ident: 482_CR26
  doi: 10.1007/978-3-642-25591-5_39
– ident: 482_CR6
  doi: 10.1145/3409964.3461784
– ident: 482_CR31
  doi: 10.1137/1.9781611973075.76
– ident: 482_CR11
  doi: 10.1145/3293611.3331607
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 482_CR14
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– ident: 482_CR18
  doi: 10.1145/3465084.3467926
– ident: 482_CR29
  doi: 10.1145/1272998.1273005
SSID ssj0003112
Score 2.373728
Snippet We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take poly (...
We present fast algorithms for approximate shortest paths in the massively parallel computation (MPC) model. We provide randomized algorithms that take...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 131
SubjectTerms Algorithms
Apexes
Approximation
Computer Communication Networks
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Emulators
Graph theory
Parallel processing
Shortest-path problems
Sketches
Software Engineering/Programming and Operating Systems
Theory of Computation
Title Massively parallel algorithms for approximate shortest paths
URI https://link.springer.com/article/10.1007/s00446-025-00482-y
https://www.proquest.com/docview/3207749074
Volume 38
WOSCitedRecordID wos001473381100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcODCeIrBQDlwg0hts6apxAUhJg4wIV7arUrSlE0qG1oLYv8eJ2s3geAA50ZW9CW2P9exDXCsO36aCqFobHiHdnQUU6lUSLmwwUaMHtBzhcLXUa8n-v34tioKK-rX7nVK0lnqebGbyz1SO37VXruATpdhBd2dsOp4d_80t7_MdzlOO3eeBlHkVaUyP8v46o4WHPNbWtR5m27zf_vcgPWKXZLz2XXYhCUz2oJmPbmBVIq8DWc3yJnRzuVTYnt_57nJicyfx5NhOXgpCBJZ4pqNfwyR0BpSDOyT3KIkdn5xsQOP3cuHiytazVGgmvm8pFxGXpRxKXFjjEuVhWEqOTMYHKLCawx4MsMyFYuMizgyeHJCelr7hoWpQjrBdqExGo_MHhCuQ-lrZJXatr2RQmqFOCsrm0UyNS04qeFMXmftMpJ5Y2QHTILAJA6YZNqCdo14UqlOkbDAQ0pqY_YWnNYILz7_Lm3_b8sPYC1wh2T_qLShUU7ezCGs6vdyWEyO3JX6BLKbxtA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNts6Yp-CLimLgN0Sl7C2maukHdZK3i_nuTrN1Q9EGfG47wJXf3XS93B3AqG24cMxbhUNEGbsggxCKKfEyZCTZC7QEdWyjcDrpd1u-Hd0VRWFa-di9TktZSz4vdbO4Rm_Gr5tp5eLoMKw3tscxDvvuHp7n9Ja7NcZq589gLAqcolflZxld3tOCY39Ki1ts0q__b5yZsFOwSXc6uwxYsqdE2VMvJDahQ5B246GjOrO1cOkWm93eaqhSJ9Hk8GeaDlwxpIotss_GPoSa0CmUD8yQ3y5GZX5ztwmPzunfVwsUcBSyJS3NMReAECRVCb4xQESW-HwtKlA4OtcJLHfAkiiRRyBLKwkDpk2PCkdJVxI8jTSfIHlRG45HaB0SlL1ypWaU0bW8EEzLSOEdGNglErGpwVsLJX2ftMvi8MbIFhmtguAWGT2tQLxHnhepknHiOpqQmZq_BeYnw4vPv0g7-tvwE1lq9Tpu3b7q3h7Du2QMzf1fqUMknb-oIVuV7Pswmx_Z6fQIOtMm0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pmFtsyYt-CLqUJxj4Ad7K2maukHtxlrF_fcmWbup6IP43HCEXy53v-vl7gCORdOOIs8LsS9pEzcF8zEPQxdTTwcbvvKAlikUbrNOx-v1_O6nKn7z2r1MSU5rGnSXpjRvjKK4MSt8M3lIrEexahV08GQRlpp6aJCO1--fZraY2CbfqWfQY4cxqyib-VnGV9c055vfUqTG87Sq_9_zOqwVrBOdT9VkAxZkugnVcqIDKi74FpzdKS6t7F8yQboneJLIBPHkeTge5P2XDCmCi0wT8veBIroSZX39VDfLkZ5rnG3DY-vq4eIaF_MVsCA2zTHlzGIx5VxtjFAexq4bcUqkChqVIRAqEIoliUPfi6nnM6lO1OOWELYkbhQqmkF2oJIOU7kLiAqX20KxTaHb4XCPi1BhHmrZhPFI1uCkhDYYTdtoBLOGyQaYQAETGGCCSQ3qJfpBcaWygDiWoqo6lq_BaYn2_PPv0vb-tvwIVrqXraB907ndh1XHnJf-6VKHSj5-lQewLN7yQTY-NJr2AfMu0pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massively+parallel+algorithms+for+approximate+shortest+paths&rft.jtitle=Distributed+computing&rft.au=Dory%2C+Michal&rft.au=Matar%2C+Shaked&rft.date=2025-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2770&rft.eissn=1432-0452&rft.volume=38&rft.issue=2&rft.spage=131&rft.epage=162&rft_id=info:doi/10.1007%2Fs00446-025-00482-y&rft.externalDocID=10_1007_s00446_025_00482_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2770&client=summon