SuperBE: computationally light background estimation with superpixels

This paper presents a motion-based superpixel-level background estimation algorithm that aims to be competitively accurate while requiring less computation time for background modelling and updating. Superpixels are chosen for their spatial and colour coherency and can be grouped together to better...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 16; no. 6; pp. 2319 - 2335
Main Authors: Chen, Andrew Tzer-Yeu, Biglari-Abhari, Morteza, Wang, Kevin I-Kai
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2019
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a motion-based superpixel-level background estimation algorithm that aims to be competitively accurate while requiring less computation time for background modelling and updating. Superpixels are chosen for their spatial and colour coherency and can be grouped together to better define the shapes of objects in an image. RGB mean and colour covariance matrices are used as the discriminative features for comparing superpixels to their background model samples. The background model initialisation and update procedures are inspired by existing approaches, with the key aim of minimising computational complexity and therefore processing time. Experiments carried out with a widely used dataset show that SuperBE can achieve a high level of accuracy and is competitive against other state-of-the-art background estimation algorithms. The main contribution of this paper is the computationally efficient use of superpixels in background estimation while maintaining high accuracy, reaching 135 fps on 320 × 240 resolution images.
AbstractList This paper presents a motion-based superpixel-level background estimation algorithm that aims to be competitively accurate while requiring less computation time for background modelling and updating. Superpixels are chosen for their spatial and colour coherency and can be grouped together to better define the shapes of objects in an image. RGB mean and colour covariance matrices are used as the discriminative features for comparing superpixels to their background model samples. The background model initialisation and update procedures are inspired by existing approaches, with the key aim of minimising computational complexity and therefore processing time. Experiments carried out with a widely used dataset show that SuperBE can achieve a high level of accuracy and is competitive against other state-of-the-art background estimation algorithms. The main contribution of this paper is the computationally efficient use of superpixels in background estimation while maintaining high accuracy, reaching 135 fps on 320 × 240 resolution images.
This paper presents a motion-based superpixel-level background estimation algorithm that aims to be competitively accurate while requiring less computation time for background modelling and updating. Superpixels are chosen for their spatial and colour coherency and can be grouped together to better define the shapes of objects in an image. RGB mean and colour covariance matrices are used as the discriminative features for comparing superpixels to their background model samples. The background model initialisation and update procedures are inspired by existing approaches, with the key aim of minimising computational complexity and therefore processing time. Experiments carried out with a widely used dataset show that SuperBE can achieve a high level of accuracy and is competitive against other state-of-the-art background estimation algorithms. The main contribution of this paper is the computationally efficient use of superpixels in background estimation while maintaining high accuracy, reaching 135 fps on 320 × 240 resolution images.
Author Biglari-Abhari, Morteza
Wang, Kevin I-Kai
Chen, Andrew Tzer-Yeu
Author_xml – sequence: 1
  givenname: Andrew Tzer-Yeu
  surname: Chen
  fullname: Chen, Andrew Tzer-Yeu
  email: andrew.chen@auckland.ac.nz
  organization: Embedded Systems Research Group, Department of Electrical and Computer Engineering, The University of Auckland
– sequence: 2
  givenname: Morteza
  surname: Biglari-Abhari
  fullname: Biglari-Abhari, Morteza
  organization: Embedded Systems Research Group, Department of Electrical and Computer Engineering, The University of Auckland
– sequence: 3
  givenname: Kevin I-Kai
  surname: Wang
  fullname: Wang, Kevin I-Kai
  organization: Embedded Systems Research Group, Department of Electrical and Computer Engineering, The University of Auckland
BookMark eNp9kF9LwzAUxYNMcJt-AN8KPldvmiZpfdNR_8DAB_U5JFm2dXZNTVJ0397MioKgL7mBe36Xc84EjVrbGoROMZxjAH7hMaY0TwEXKXAKKT9AY1wwnBYZLkfff4AjNPF-A8A4I3SMqse-M-66uky03XZ9kKG2rWyaXdLUq3VIlNQvK2f7dpEYH-rt5z55q8M68Xuyq99N44_R4VI23px8zSl6vqmeZnfp_OH2fnY1TzXBLKRM4qKALGOKlYTJ3NCyUJjHFyu6KJnhhC1ZIUslqSK6VLkmkFOtCJGMKSBTdDbc7Zx97aMhsbG9i369yMoYkeeQsajig0o7670zS6HrIVhwsm4EBrHvTAydidiZ2HcmeCTxL7JzMbPb_ctkA-Ojtl0Z9-Ppb-gDwWCABQ
CitedBy_id crossref_primary_10_1007_s11042_022_12446_6
crossref_primary_10_1109_ACCESS_2020_3030108
crossref_primary_10_1016_j_patcog_2021_107995
crossref_primary_10_1109_TIE_2019_2893824
crossref_primary_10_1049_iet_ipr_2019_1029
crossref_primary_10_1007_s11042_020_09838_x
crossref_primary_10_1007_s00371_021_02286_0
crossref_primary_10_1109_TCYB_2020_3018120
Cites_doi 10.1016/j.patrec.2004.07.013
10.1016/j.cviu.2013.12.005
10.1109/TIP.2014.2378053
10.1109/TPAMI.2012.259
10.1109/TIP.2008.2007558
10.1007/978-3-662-05296-9_31
10.1016/j.rti.2004.12.004
10.1007/978-3-319-16199-0_17
10.1016/j.cosrev.2014.04.001
10.1016/j.cviu.2014.06.003
10.1016/j.cviu.2013.12.003
10.1109/TPAMI.2012.120
10.1007/978-3-319-10602-1_12
10.1023/A:1021849801764
10.1109/TIP.2010.2101613
10.1109/ICCV.2013.223
10.1109/CVPR.2011.5995508
10.1109/CVPR.2015.7299114
10.1109/ICCV.2013.273
10.1007/978-3-540-89639-5_74
10.1109/WACV.2015.137
10.1109/CVPRW.2012.6238925
10.1109/CVPR.2015.7299099
10.1109/CVPRW.2012.6238923
10.1007/978-3-540-69812-8_15
10.1109/ICCVW.2015.123
10.1109/CVPR.2013.477
10.1109/ICPR.2006.312
10.1109/CVPRW.2014.126
10.1109/VS.2000.856852
10.1109/AVSS.2010.34
10.1109/ICIP.2014.7025893
10.1109/CVPRW.2014.68
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11554-018-0750-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 2335
ExternalDocumentID 10_1007_s11554_018_0750_7
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-6a1880226b6936a4e598b175981b5d96e736f68a9ba5b3c9b4c3045cb33a66b03
IEDL.DBID P5Z
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501450300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 04:04:57 EST 2025
Sat Nov 29 07:48:49 EST 2025
Tue Nov 18 22:23:27 EST 2025
Fri Feb 21 02:39:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computer vision
Image motion analysis
Background estimation
Real-time systems
Embedded vision
Object segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6a1880226b6936a4e598b175981b5d96e736f68a9ba5b3c9b4c3045cb33a66b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918674026
PQPubID 2044148
PageCount 17
ParticipantIDs proquest_journals_2918674026
crossref_citationtrail_10_1007_s11554_018_0750_7
crossref_primary_10_1007_s11554_018_0750_7
springer_journals_10_1007_s11554_018_0750_7
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lim, Han (CR23) 2014
Figueira, Taiana, Nambiar, Nascimento, Bernardino (CR11) 2015
CR19
CR17
CR39
CR16
CR38
CR15
CR37
CR14
Liem, Gavrila (CR21) 2013
CR13
Shoushtarian, Bez (CR30) 2005; 26
CR34
CR10
Barnich, van Droogenbroeck (CR4) 2011; 20
Mittal, Davis (CR26) 2003; 51
CR31
St-Charles, Bilodeau, Bergevin (CR35) 2015; 24
Förstner, Moonen (CR12) 2003
Sobral, Vacavant (CR32) 2014; 122
Zivkovic (CR41) 2004; 2
Cherian, Sra, Banerjee, Papanikolopoulos (CR8) 2013; 35
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (CR1) 2012; 34
CR2
Devi, Malmurugan, Poornima (CR9) 2012; 43
CR3
CR6
Liem, Gavrila (CR22) 2014; 128
CR7
CR29
CR28
CR27
CR25
Spampinato, Palazzo, Kavasidis (CR33) 2014; 122
Lu, Tan (CR24) 2001; 2
CR20
Kim, Chalidabhongse, Harwood, Davis (CR18) 2005; 11
CR40
Tsai, Lai (CR36) 2009; 18
Bouwmans (CR5) 2014; 11
750_CR6
750_CR7
A Mittal (750_CR26) 2003; 51
Dario Figueira (750_CR11) 2015
D Tsai (750_CR36) 2009; 18
750_CR27
R Achanta (750_CR1) 2012; 34
750_CR2
750_CR29
750_CR3
750_CR28
750_CR34
750_CR14
A Sobral (750_CR32) 2014; 122
750_CR13
T Bouwmans (750_CR5) 2014; 11
750_CR10
MC Liem (750_CR22) 2014; 128
750_CR31
O Barnich (750_CR4) 2011; 20
C Spampinato (750_CR33) 2014; 122
Martijn C. Liem (750_CR21) 2013
A Cherian (750_CR8) 2013; 35
Jongwoo Lim (750_CR23) 2014
750_CR19
K Kim (750_CR18) 2005; 11
Wolfgang Förstner (750_CR12) 2003
750_CR16
750_CR38
Z Zivkovic (750_CR41) 2004; 2
750_CR15
750_CR37
750_CR17
750_CR39
750_CR25
P St-Charles (750_CR35) 2015; 24
W Lu (750_CR24) 2001; 2
750_CR40
750_CR20
SK Devi (750_CR9) 2012; 43
B Shoushtarian (750_CR30) 2005; 26
References_xml – volume: 26
  start-page: 5
  issue: 1
  year: 2005
  end-page: 26
  ident: CR30
  article-title: A practical adaptive approach for dynamic background subtraction using an invariant colour model and object tracking
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.07.013
– volume: 122
  start-page: 4
  year: 2014
  end-page: 21
  ident: CR32
  article-title: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.12.005
– volume: 24
  start-page: 359
  issue: 1
  year: 2015
  end-page: 373
  ident: CR35
  article-title: Subsense: a universal change detection method with local adaptive sensitivity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2378053
– ident: CR14
– ident: CR39
– ident: CR2
– ident: CR16
– ident: CR37
– volume: 35
  start-page: 2161
  issue: 9
  year: 2013
  end-page: 2174
  ident: CR8
  article-title: Jensen–Bregman logdet divergence with application to efficient similarity search for covariance matrices
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.259
– ident: CR10
– ident: CR6
– volume: 43
  start-page: 1
  issue: 10
  year: 2012
  end-page: 5
  ident: CR9
  article-title: Improving the efficiency of background subtraction using superpixel extraction and midpoint for centroid
  publication-title: Int. J. Comput. Appl.
– ident: CR29
– volume: 18
  start-page: 158
  issue: 1
  year: 2009
  end-page: 167
  ident: CR36
  article-title: Independent component analysis-based background subtraction for indoor surveillance
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2007558
– start-page: 299
  year: 2003
  end-page: 309
  ident: CR12
  article-title: A Metric for Covariance Matrices
  publication-title: Geodesy-The Challenge of the 3rd Millennium
  doi: 10.1007/978-3-662-05296-9_31
– volume: 11
  start-page: 172
  issue: 3
  year: 2005
  end-page: 185
  ident: CR18
  article-title: Real-time foreground-background segmentation using codebook model
  publication-title: Real Time Imaging
  doi: 10.1016/j.rti.2004.12.004
– ident: CR40
– start-page: 241
  year: 2015
  end-page: 255
  ident: CR11
  article-title: The HDA+ Data Set for Research on Fully Automated Re-identification Systems
  publication-title: Computer Vision - ECCV 2014 Workshops
  doi: 10.1007/978-3-319-16199-0_17
– ident: CR25
– volume: 11
  start-page: 31
  issue: 12
  year: 2014
  end-page: 66
  ident: CR5
  article-title: Traditional and recent approaches in background modeling for foreground detection: an overview
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2014.04.001
– ident: CR27
– ident: CR19
– volume: 2
  start-page: 137
  year: 2001
  end-page: 140
  ident: CR24
  article-title: A color histogram based people tracking system
  publication-title: Int. Symp. Circuits Syst.
– volume: 128
  start-page: 36
  year: 2014
  end-page: 50
  ident: CR22
  article-title: Joint multi-person detection and tracking from overlapping cameras
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2014.06.003
– volume: 122
  start-page: 74
  year: 2014
  end-page: 83
  ident: CR33
  article-title: A texton-based kernel density estimation approach for background modeling under extreme conditions
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.12.003
– ident: CR3
– ident: CR15
– ident: CR38
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  end-page: 2282
  ident: CR1
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– ident: CR34
– start-page: 173
  year: 2014
  end-page: 187
  ident: CR23
  article-title: Generalized Background Subtraction Using Superpixels with Label Integrated Motion Estimation
  publication-title: Computer Vision – ECCV 2014
  doi: 10.1007/978-3-319-10602-1_12
– volume: 51
  start-page: 189
  issue: 3
  year: 2003
  end-page: 203
  ident: CR26
  article-title: M2tracker: a multi-view approach to segmenting and tracking people in a cluttered scene
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1021849801764
– volume: 20
  start-page: 1709
  issue: 6
  year: 2011
  end-page: 1724
  ident: CR4
  article-title: Vibe: a universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2101613
– ident: CR7
– volume: 2
  start-page: 28
  year: 2004
  end-page: 31
  ident: CR41
  article-title: Improved adaptive gaussian mixture model for background subtraction
  publication-title: Int. Conf. on Pattern Recognit.
– ident: CR28
– start-page: 203
  year: 2013
  end-page: 212
  ident: CR21
  article-title: A Comparative Study on Multi-person Tracking Using Overlapping Cameras
  publication-title: Lecture Notes in Computer Science
– ident: CR20
– volume: 43
  start-page: 1
  issue: 10
  year: 2012
  ident: 750_CR9
  publication-title: Int. J. Comput. Appl.
– volume: 11
  start-page: 172
  issue: 3
  year: 2005
  ident: 750_CR18
  publication-title: Real Time Imaging
  doi: 10.1016/j.rti.2004.12.004
– ident: 750_CR27
  doi: 10.1109/ICCV.2013.223
– ident: 750_CR6
– volume: 20
  start-page: 1709
  issue: 6
  year: 2011
  ident: 750_CR4
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2101613
– volume: 11
  start-page: 31
  issue: 12
  year: 2014
  ident: 750_CR5
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2014.04.001
– volume: 2
  start-page: 28
  year: 2004
  ident: 750_CR41
  publication-title: Int. Conf. on Pattern Recognit.
– ident: 750_CR2
– ident: 750_CR7
  doi: 10.1109/CVPR.2011.5995508
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 750_CR1
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– start-page: 241
  volume-title: Computer Vision - ECCV 2014 Workshops
  year: 2015
  ident: 750_CR11
  doi: 10.1007/978-3-319-16199-0_17
– ident: 750_CR13
  doi: 10.1109/CVPR.2015.7299114
– ident: 750_CR20
  doi: 10.1109/ICCV.2013.273
– volume: 35
  start-page: 2161
  issue: 9
  year: 2013
  ident: 750_CR8
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.259
– volume: 122
  start-page: 4
  year: 2014
  ident: 750_CR32
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.12.005
– ident: 750_CR10
  doi: 10.1007/978-3-540-89639-5_74
– ident: 750_CR34
  doi: 10.1109/WACV.2015.137
– ident: 750_CR15
  doi: 10.1109/CVPRW.2012.6238925
– ident: 750_CR28
– volume: 26
  start-page: 5
  issue: 1
  year: 2005
  ident: 750_CR30
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.07.013
– volume: 2
  start-page: 137
  year: 2001
  ident: 750_CR24
  publication-title: Int. Symp. Circuits Syst.
– ident: 750_CR40
  doi: 10.1109/CVPR.2015.7299099
– volume: 51
  start-page: 189
  issue: 3
  year: 2003
  ident: 750_CR26
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1021849801764
– ident: 750_CR29
  doi: 10.1109/CVPRW.2012.6238923
– ident: 750_CR16
– ident: 750_CR25
  doi: 10.1007/978-3-540-69812-8_15
– ident: 750_CR17
  doi: 10.1109/ICCVW.2015.123
– start-page: 203
  volume-title: Lecture Notes in Computer Science
  year: 2013
  ident: 750_CR21
– start-page: 173
  volume-title: Computer Vision – ECCV 2014
  year: 2014
  ident: 750_CR23
  doi: 10.1007/978-3-319-10602-1_12
– ident: 750_CR31
  doi: 10.1109/CVPR.2013.477
– volume: 128
  start-page: 36
  year: 2014
  ident: 750_CR22
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2014.06.003
– ident: 750_CR37
  doi: 10.1109/ICPR.2006.312
– ident: 750_CR39
  doi: 10.1109/CVPRW.2014.126
– volume: 18
  start-page: 158
  issue: 1
  year: 2009
  ident: 750_CR36
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2007558
– start-page: 299
  volume-title: Geodesy-The Challenge of the 3rd Millennium
  year: 2003
  ident: 750_CR12
  doi: 10.1007/978-3-662-05296-9_31
– ident: 750_CR19
  doi: 10.1109/VS.2000.856852
– volume: 122
  start-page: 74
  year: 2014
  ident: 750_CR33
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2013.12.003
– volume: 24
  start-page: 359
  issue: 1
  year: 2015
  ident: 750_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2378053
– ident: 750_CR3
  doi: 10.1109/AVSS.2010.34
– ident: 750_CR14
  doi: 10.1109/ICIP.2014.7025893
– ident: 750_CR38
  doi: 10.1109/CVPRW.2014.68
SSID ssj0067635
Score 2.2253602
Snippet This paper presents a motion-based superpixel-level background estimation algorithm that aims to be competitively accurate while requiring less computation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2319
SubjectTerms Accuracy
Algorithms
Batch processing
Color
Computer Graphics
Computer Science
Cost control
Covariance matrix
Embedded systems
Image Processing and Computer Vision
Multimedia Information Systems
Original Research Paper
Pattern Recognition
Signal,Image and Speech Processing
Surveillance
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1Sg6elEC36WYTbyotnopYld6WTTYLxbKWbiv6753Zh4uigp6TDcvk8X2TyXwDcOqRT5Foy13iJO-pWHODtIAjliRKGKWVs3mxiWA4VOOxvi3zuLPqtXsVksxP6jrZjaAPXV_FCeZ4sApriHaK6jXcjR6r41eSwhp5WUp6HOHtI5T53RCfwahmmF-CojnWDJr_-sst2CypJbss1sI2rLh0B5pV2QZW7uJd6I-WMze_6l8wm7eV14HTNzYlT52ZyD5RskcaM5LgKHIbGV3Ysoy-nE1eEVD34GHQv7--4WU1BW6FJxdcRiS9hmzLSC1k1HO-VgbJg0bi6sdaukDIRKpIm8g3wmrTsxRFtUaISErTEfvQSJ9TdwAMB4k6BqkkngA9ZS36WDJ2vnS6K53zTAs6lVlDW0qNU8WLaViLJJOZQjRTSGYKgxacfXwyK3Q2fuvcruYqLLdcFnY1afOhOyxbcF7NTd3842CHf-p9BBtImXTxoKUNjcV86Y5h3b4sJtn8JF-J70eC1lI
  priority: 102
  providerName: Springer Nature
Title SuperBE: computationally light background estimation with superpixels
URI https://link.springer.com/article/10.1007/s11554-018-0750-7
https://www.proquest.com/docview/2918674026
Volume 16
WOSCitedRecordID wos000501450300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4zYMX5ydO58jBkxLc1jZNvIiTDUEYY1MZXkqTZjAcXd2H6H9vXptuKLiLl17ShNKXvM-83w_gooExxUgoqkeaUZdHgkrjFlBjS0bckVxwrVKyCb_b5cOh6NmE29xeq8x1Yqqoo6nCHPl1UyD0mol22G3yTpE1CqurlkKjACVESUDqhp73mmtihmBrGHBx1qDG0q2qmmnrHBpSE0hzikaT-j_t0trZ_FUfTc1Op_zfD96DXetwkrtsh-zDlo4PoJyTORB7tg-hPVgmetZq3xCVjtkk4eSLTDB-JzJUb9gCEkcEgTmyjkeCaVwyx5nJ-NOY2SN47rSf7h-o5VigymmwBWUhArIZH0wy4bDQ1Z7g0rgUwrizXiSY9h02YjwUMvSko4R0FdZWlXSckDFZd46hGE9jfQLELBLWpZGC0QsuV8pEXizSHtOiybRuyArU8z8cKAtAjjwYk2ANnYxCCYxQAhRK4FfgcjUlydA3Nr1czQUR2IM4D9ZSqMBVLsr18J-LnW5e7Ax2jOcksnstVSguZkt9DtvqYzGez2pQarW7vX4NCo8-raV70jz7g5dvQkXkjQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB60CnqxPrFaNQe9KMG22WYTQcRHRakWQQVv6yabQrG0ta2vP-VvdGYfFgW9efCczUB2JjPfzGRmADbL5FM0teWu6ST3VKS5QVjA0ZY0lTBKK2fjYRN-o6Hu7vTVGLxntTD0rDLTibGijrqWYuS7FU2t19DbkQe9R05Toyi7mo3QSMSi7t5e0GUb7J-fIH-3KpXT2s3xGU-nCnArynLIZUgtyBB1GKmFDD1X1cqgEdUI4KqRls4XsilVqE1YNcJq41nKJlojRCilKQmkOw4TnlA-3au6zzPNL6m5Gzl4SpY5WtbPLGpcqkeGGx13xclIc_-rHRyB22_52NjMneb_2w-ahZkUULPD5AbMwZjrzEM-G1bBUt21ALXrp57rH9X2mI3X0iBo-421KT7BTGgfqMSlEzFqPJJUdDIKU7MB7ey1XhFGLMLtnxxmCXKdbsctA0MiYckggEa95ylr0bOUkatKpyvSubIpQCnjaGDTBus056MdjFpDkxAEKAQBCUHgF2D7c0sv6S7y28fFjPFBqmgGwYjrBdjJRGe0_COxld-JbcDU2c3lRXBx3qivwjSiRJ284SlCbth_cmswaZ-HrUF_Pb4BDO7_WqI-AEXlO0A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1Dz4pATXtU0T37xsKMoYTGVvpUlTGI5a1k7035vTy4aigvicNJSTy_ednJzvABxb6FNEQlEdaUYdHgoqDS2gBksibksuuFZ5sQmv1-PDoeiXdU7T6rV7FZIschpQpSnOzpIwOpsnviEMGjeYU4Q86i3CkoPv6NFdHzxVRzFDtTX0uDizqIG6WVjzuyE-A9OcbX4JkOa4063_-4_XYa2knOSiWCMbsKDjTahX5RxIubu3oDOYJnpy2TknKm8rrwnH72SMHjyRgXrGJJA4JCjNUeQ8ErzIJSl-mYzeDNBuw2O383B1Q8sqC1TZFssoC1CSzbAwyYTNAke7gktDKoQhtG4omPZsFjEeCBm40lZCOgqjq0radsCYbNk7UItfYr0LxAwStKShmOZkcLhSxvdioXaZFm2mtSUb0KpM7KtSghwrYYz9uXgymsk3ZvLRTL7XgJPZJ0mhv_Fb52Y1b365FVO_LVCzz7jJrAGn1TzNm38cbO9PvY9gpX_d9e9ve3f7sGpYlSjevDShlk2m-gCW1Ws2SieH-QL9ACky4ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SuperBE%3A+computationally+light+background+estimation+with+superpixels&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Chen%2C+Andrew+Tzer-Yeu&rft.au=Biglari-Abhari%2C+Morteza&rft.au=Wang%2C+Kevin+I-Kai&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=16&rft.issue=6&rft.spage=2319&rft.epage=2335&rft_id=info:doi/10.1007%2Fs11554-018-0750-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon