Strong Convergence Analysis of Batch Gradient-Based Learning Algorithm for Training Pi-Sigma Network Based on TSK Fuzzy Models

By combining of the benefits of high-order network and TSK (Tagaki-Sugeno-Kang) inference system, Pi-Sigma network is capable to dispose with the nonlinear problems much more effectively, which means it has a compacter construction, and quicker computational speed. The aim of this paper is to presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters Jg. 43; H. 3; S. 745 - 758
Hauptverfasser: Liu, Yan, Yang, Dakun, Nan, Nan, Guo, Li, Zhang, Jianjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2016
Springer Nature B.V
Schlagworte:
ISSN:1370-4621, 1573-773X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract By combining of the benefits of high-order network and TSK (Tagaki-Sugeno-Kang) inference system, Pi-Sigma network is capable to dispose with the nonlinear problems much more effectively, which means it has a compacter construction, and quicker computational speed. The aim of this paper is to present a gradient-based learning method for Pi-Sigma network to train TSK fuzzy inference system. Moreover, some strong convergence results are established based on the weak convergence outcomes, which indicates that the sequence of weighted fuzzy parameters gets to a fixed point. Simulation results show the modified learning algorithm is effective to support the theoretical results.
AbstractList By combining of the benefits of high-order network and TSK (Tagaki-Sugeno-Kang) inference system, Pi-Sigma network is capable to dispose with the nonlinear problems much more effectively, which means it has a compacter construction, and quicker computational speed. The aim of this paper is to present a gradient-based learning method for Pi-Sigma network to train TSK fuzzy inference system. Moreover, some strong convergence results are established based on the weak convergence outcomes, which indicates that the sequence of weighted fuzzy parameters gets to a fixed point. Simulation results show the modified learning algorithm is effective to support the theoretical results.
Author Liu, Yan
Guo, Li
Nan, Nan
Yang, Dakun
Zhang, Jianjun
Author_xml – sequence: 1
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  email: liuyan@dlpu.edu.cn
  organization: School of Information Science and Engineering, Dalian Polytechnic University, School of Electronic and Information Engineering, Dalian University of Technology
– sequence: 2
  givenname: Dakun
  surname: Yang
  fullname: Yang, Dakun
  organization: School of Information Science and Technology, Sun Yat-sen University
– sequence: 3
  givenname: Nan
  surname: Nan
  fullname: Nan, Nan
  organization: Department of Electromechanical Engineering, Jining Polytechnic
– sequence: 4
  givenname: Li
  surname: Guo
  fullname: Guo, Li
  organization: School of Information Science and Engineering, Dalian Polytechnic University
– sequence: 5
  givenname: Jianjun
  surname: Zhang
  fullname: Zhang, Jianjun
  organization: School of Information Science and Engineering, Dalian Polytechnic University
BookMark eNp9kE1LAzEQhoMo-PkDvAU8R_O1TXqsRatYP6AVvIV0N9lGt4kmqVIP_na3riAIeppheJ9h5tkFmz54A8AhwccEY3GSCME9hjApUJ_zAtENsEMKwZAQ7GGz7ZnAiPco2Qa7KT1i3FIU74CPSY7B13AY_KuJtfGlgQOvm1VyCQYLT3Uu53AUdeWMz-hUJ1PBsdHRu5YaNHWILs8X0IYIp1G7r_GdQxNXLzS8MfktxCfYYcHD6eQKni_f31fwOlSmSftgy-ommYPvugfuz8-mwws0vh1dDgdjVDLSy6gndZ8JzSptNZ0JiyUnmhalZAW2gnHMJbe4YBUtTWGlNbNScGsryaXQllG2B466vc8xvCxNyuoxLGP7Z1K0TyRjfSzXKdGlyhhSisaq0mWdXfC5fa1RBKu1bNXJVq1stZat1iT5RT5Ht9Bx9S9DOya1WV-b-HPT39AnBJSTtw
CitedBy_id crossref_primary_10_1016_j_neucom_2017_06_057
crossref_primary_10_1109_ACCESS_2018_2883381
crossref_primary_10_1016_j_jfranklin_2018_06_015
crossref_primary_10_1007_s40815_020_00826_9
crossref_primary_10_1002_asjc_2400
crossref_primary_10_1049_iet_cta_2020_0090
crossref_primary_10_1088_1361_665X_aaae28
crossref_primary_10_1016_j_neucom_2017_06_061
crossref_primary_10_1007_s11063_016_9535_9
crossref_primary_10_1007_s12530_024_09606_4
Cites_doi 10.1016/j.neucom.2007.12.004
10.1016/j.fss.2012.09.015
10.1016/j.knosys.2013.01.030
10.1007/s11071-013-0880-1
10.1109/TSMCB.2007.901375
10.1109/TSMC.1985.6313399
10.1109/91.928735
10.1631/jzus.C1200008
10.1016/j.matdes.2010.02.009
10.1002/cplx.21441
10.1016/j.ins.2013.06.028
10.1109/TFUZZ.2007.905918
10.1162/neco.1992.4.3.415
10.1080/00207721.2012.670307
10.1109/21.256541
10.1016/j.ins.2009.12.030
10.1109/TNN.2002.1031939
10.1016/j.neucom.2008.12.005
10.1109/TNNLS.2012.2231436
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright Springer Nature B.V. Jun 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Copyright Springer Nature B.V. Jun 2016
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-015-9445-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 758
ExternalDocumentID 10_1007_s11063_015_9445_2
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  grantid: 61403056 and 61473059
– fundername: Foundation of Liaoning Educational Committee
  grantid: L2014218
– fundername: Foundation of major platform for National Engineering Research Center of Seafood
  grantid: [2011]191
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-68a937a3dafa2b7f0841a25c8350f7340484f053d2ce5f8febc74ffd8487af323
IEDL.DBID K7-
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375792900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1370-4621
IngestDate Sat Oct 18 22:41:50 EDT 2025
Tue Nov 18 20:53:09 EST 2025
Sat Nov 29 02:27:46 EST 2025
Fri Feb 21 02:36:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Pi-sigma network
TSK fuzzy models
Strong convergence
Gradient-based learning algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-68a937a3dafa2b7f0841a25c8350f7340484f053d2ce5f8febc74ffd8487af323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918339082
PQPubID 2043838
PageCount 14
ParticipantIDs proquest_journals_2918339082
crossref_citationtrail_10_1007_s11063_015_9445_2
crossref_primary_10_1007_s11063_015_9445_2
springer_journals_10_1007_s11063_015_9445_2
PublicationCentury 2000
PublicationDate 20160600
2016-6-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 6
  year: 2016
  text: 20160600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Meng, Leung, Xu (CR24) 2013; 249
Mackay (CR21) 1992; 4
Shin, Ghosh (CR6) 1991; 1
Chen, Han (CR23) 2013; 18
Chen, Fei, Tian (CR3) 2013; 212
Faria, Geraldo, Vilma (CR14) 2013; 44
Charurved, Pandit, Srivastava (CR17) 2007; 8
Sun, Au, Choi (CR11) 2007; 37
Campo, Echanobe, Bosque, Tarela (CR12) 2008; 16
Liu, Yang, Yang, Wu (CR13) 2014; 34
Ampazis, Perantonis (CR20) 2002; 13
Singh, Borah (CR1) 2009; 46
Tseng, Chen, Uang (CR5) 2001; 9
Jang (CR16) 1993; 23
Jin, Jiang, Zhu (CR8) 2012; 25
Liu, Yang, Li, Wu (CR22) 2012; 13
Wu, Li, Yang, Liu (CR19) 2010; 180
Yu, Li, Luo, Su, Li (CR9) 2010; 31
Zhang, Wu, Chen, Xiong (CR10) 2008; 72
Takagi, Sugeno (CR4) 1985; 15
Lin, Chang, Lin (CR2) 2013; 24
Yuan, Sun (CR18) 2001
Ghazali, Hussain, Nawi, Mohamad (CR7) 2009; 72
Chen (CR15) 2013; 73
P Singh (9445_CR1) 2009; 46
JSR Jang (9445_CR16) 1993; 23
Y Lin (9445_CR2) 2013; 24
I Campo (9445_CR12) 2008; 16
Y Liu (9445_CR13) 2014; 34
D Meng (9445_CR24) 2013; 249
D Chen (9445_CR15) 2013; 73
P Chen (9445_CR3) 2013; 212
W Wu (9445_CR19) 2010; 180
DJC Mackay (9445_CR21) 1992; 4
T Takagi (9445_CR4) 1985; 15
W Yu (9445_CR9) 2010; 31
YX Yuan (9445_CR18) 2001
C Tseng (9445_CR5) 2001; 9
FA Faria (9445_CR14) 2013; 44
Y Shin (9445_CR6) 1991; 1
Z Sun (9445_CR11) 2007; 37
Y Jin (9445_CR8) 2012; 25
C Zhang (9445_CR10) 2008; 72
N Ampazis (9445_CR20) 2002; 13
Y Liu (9445_CR22) 2012; 13
D Chen (9445_CR23) 2013; 18
K Charurved (9445_CR17) 2007; 8
R Ghazali (9445_CR7) 2009; 72
References_xml – volume: 25
  start-page: 990
  issue: 6
  year: 2012
  end-page: 997
  ident: CR8
  article-title: Neural network based fuzzy identification and its application to modeling and control of complex systems
  publication-title: IEEE Trans Syst Man Cybern
– volume: 72
  start-page: 513
  issue: 1–3
  year: 2008
  end-page: 520
  ident: CR10
  article-title: Convergence of BP algorithm for product unit neural networks with exponential weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.004
– volume: 212
  start-page: 62
  year: 2013
  end-page: 77
  ident: CR3
  article-title: Networked control for a class of T–S fuzzy systems with stochastic sensor faults
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2012.09.015
– volume: 46
  start-page: 12
  year: 2009
  end-page: 21
  ident: CR1
  article-title: High-order fuzzy-neuro expert system for time series forecasting
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.01.030
– volume: 73
  start-page: 1495
  issue: 3
  year: 2013
  end-page: 1505
  ident: CR15
  article-title: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-0880-1
– volume: 37
  start-page: 1321
  issue: 5
  year: 2007
  end-page: 1331
  ident: CR11
  article-title: A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2007.901375
– volume: 15
  start-page: 116
  issue: 2
  year: 1985
  end-page: 132
  ident: CR4
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume: 9
  start-page: 381
  issue: 3
  year: 2001
  end-page: 392
  ident: CR5
  article-title: Fuzzy tracking control design for nonlinear dynamic systems via TS fuzzy model
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.928735
– year: 2001
  ident: CR18
  publication-title: Optimization theory and method
– volume: 13
  start-page: 585
  issue: 8
  year: 2012
  end-page: 592
  ident: CR22
  article-title: Negative effects of sufficiently small initial weights on back-propagation neural networks
  publication-title: J of Zhejiang Univ Sci C (Comput & Electron)
  doi: 10.1631/jzus.C1200008
– volume: 31
  start-page: 3282
  issue: 7
  year: 2010
  end-page: 3288
  ident: CR9
  article-title: Prediction of the mechanical properties of the post-forged TiC6AlC4V alloy using fuzzy neural network
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.02.009
– volume: 8
  start-page: 1428
  issue: 4
  year: 2007
  end-page: 1438
  ident: CR17
  article-title: Modified neo-fuzzy neuron-based approach for economic and environmental optimal power dispatch
  publication-title: Appl Soft Comput
– volume: 18
  start-page: 55
  issue: 4
  year: 2013
  end-page: 66
  ident: CR23
  article-title: Prediction of multivariate chaotic time series via radial basis function neural network
  publication-title: Complexity
  doi: 10.1002/cplx.21441
– volume: 34
  start-page: 114
  issue: 1
  year: 2014
  end-page: 126
  ident: CR13
  article-title: A modified gradient-based neuro-fuzzy learning algorithm for pi-sigma network based on first-order takagi-sugeno system
  publication-title: J Math Res Appl
– volume: 249
  start-page: 85
  issue: 10
  year: 2013
  end-page: 95
  ident: CR24
  article-title: The strong convergence of visual classification method and its applications
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.06.028
– volume: 16
  start-page: 761
  issue: 3
  year: 2008
  end-page: 778
  ident: CR12
  article-title: Efficient hardware/software implementation of an adaptive neuro-fuzzy system
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2007.905918
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  end-page: 447
  ident: CR21
  article-title: Bayesian interpolation
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.415
– volume: 44
  start-page: 1956
  issue: 10
  year: 2013
  end-page: 1969
  ident: CR14
  article-title: Reducing the conservatism of LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2012.670307
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  end-page: 685
  ident: CR16
  article-title: ANFIS adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 180
  start-page: 1630
  issue: 9
  year: 2010
  end-page: 1642
  ident: CR19
  article-title: A modified gradient-based neuro-fuzzy learning algorithm and its convergence
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.12.030
– volume: 13
  start-page: 1064
  issue: 5
  year: 2002
  end-page: 1074
  ident: CR20
  article-title: Two highly efficient second-order algorithms for training feedforward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1031939
– volume: 1
  start-page: 13
  year: 1991
  end-page: 18
  ident: CR6
  article-title: The Pi-Sigma networks: an efficient higher-order neural network for pattern classification and function approximation
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 72
  start-page: 2359
  issue: 10–12
  year: 2009
  end-page: 2367
  ident: CR7
  article-title: Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.005
– volume: 24
  start-page: 310
  issue: 2
  year: 2013
  end-page: 321
  ident: CR2
  article-title: Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2231436
– volume: 212
  start-page: 62
  year: 2013
  ident: 9445_CR3
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2012.09.015
– volume: 180
  start-page: 1630
  issue: 9
  year: 2010
  ident: 9445_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.12.030
– volume: 249
  start-page: 85
  issue: 10
  year: 2013
  ident: 9445_CR24
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.06.028
– volume: 72
  start-page: 513
  issue: 1–3
  year: 2008
  ident: 9445_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.004
– volume: 34
  start-page: 114
  issue: 1
  year: 2014
  ident: 9445_CR13
  publication-title: J Math Res Appl
– volume: 24
  start-page: 310
  issue: 2
  year: 2013
  ident: 9445_CR2
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2231436
– volume: 18
  start-page: 55
  issue: 4
  year: 2013
  ident: 9445_CR23
  publication-title: Complexity
  doi: 10.1002/cplx.21441
– volume: 9
  start-page: 381
  issue: 3
  year: 2001
  ident: 9445_CR5
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.928735
– volume: 73
  start-page: 1495
  issue: 3
  year: 2013
  ident: 9445_CR15
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-0880-1
– volume: 72
  start-page: 2359
  issue: 10–12
  year: 2009
  ident: 9445_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.005
– volume-title: Optimization theory and method
  year: 2001
  ident: 9445_CR18
– volume: 25
  start-page: 990
  issue: 6
  year: 2012
  ident: 9445_CR8
  publication-title: IEEE Trans Syst Man Cybern
– volume: 15
  start-page: 116
  issue: 2
  year: 1985
  ident: 9445_CR4
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1985.6313399
– volume: 8
  start-page: 1428
  issue: 4
  year: 2007
  ident: 9445_CR17
  publication-title: Appl Soft Comput
– volume: 31
  start-page: 3282
  issue: 7
  year: 2010
  ident: 9445_CR9
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2010.02.009
– volume: 16
  start-page: 761
  issue: 3
  year: 2008
  ident: 9445_CR12
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2007.905918
– volume: 37
  start-page: 1321
  issue: 5
  year: 2007
  ident: 9445_CR11
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2007.901375
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 9445_CR21
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.415
– volume: 13
  start-page: 1064
  issue: 5
  year: 2002
  ident: 9445_CR20
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1031939
– volume: 13
  start-page: 585
  issue: 8
  year: 2012
  ident: 9445_CR22
  publication-title: J of Zhejiang Univ Sci C (Comput & Electron)
  doi: 10.1631/jzus.C1200008
– volume: 1
  start-page: 13
  year: 1991
  ident: 9445_CR6
  publication-title: Proc Int Joint Conf Neural Netw
– volume: 44
  start-page: 1956
  issue: 10
  year: 2013
  ident: 9445_CR14
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2012.670307
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 9445_CR16
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 46
  start-page: 12
  year: 2009
  ident: 9445_CR1
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.01.030
SSID ssj0010020
Score 2.1296546
Snippet By combining of the benefits of high-order network and TSK (Tagaki-Sugeno-Kang) inference system, Pi-Sigma network is capable to dispose with the nonlinear...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 745
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Convergence
Inference
Machine learning
Neural networks
Parameter modification
Teaching methods
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iHrz4FqtV5uBJCexms5v02BaroBRhq3hbttmkFtqttKtgD_52J_toUVTQ8-axZDKTbzKTbwg504lA1CHszX3AKUeITiWqEZWu0LhBuJY5qc_Dreh25eNj4658xz2rst2rkGRuqZeP3dB7sbk_Pm1w7lO0u2u-JZuxLnr4sAgdWACUe1nCwbmZW4Uyvxvi82G0RJhfgqL5WdPZ-tdfbpPNElpCs9gLO2RFp7tkqyrbAKUW75H30F5_D6BtE87zt5caKm4SmBhooXV-gqtpngyW0RaecwmUPKwDaI4Gk-kwexoDwl3olRUm4G5Iw-FgHEO3yCuHotskhV54A52X-fwNbN210Wyf3Hcue-1rWpZhoMpzg4wGMkYME3tJbGLWF8aR3I2ZrxC7OUZ4HG0AN6jLCVPaN9LovhLcmESiLxQbj3kHZDWdpPqQQEP4iVAcIQr264tEuipgBp1wxzBPK10jTiWPSJUc5bZUxihasivb9Y1wfSO7vhGrkfNFl-eCoOO3xvVKyFGpq7OINdCsebb0e41cVEJdfv5xsKM_tT4mG4i1giLLrE5Ws-mLPiHr6jUbzqan-Rb-ANxQ6Uk
  priority: 102
  providerName: Springer Nature
Title Strong Convergence Analysis of Batch Gradient-Based Learning Algorithm for Training Pi-Sigma Network Based on TSK Fuzzy Models
URI https://link.springer.com/article/10.1007/s11063-015-9445-2
https://www.proquest.com/docview/2918339082
Volume 43
WOSCitedRecordID wos000375792900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_iYwcuYzAQBYbegROTReI4sXuaKKKbNFRVtEOIS5Q6dluptKwNSOPA377nxKEaElx28SWxE-l9-Pf8nt8P4NjkklCHdCf3iWCCIDpTZEZMhdKQggijyqY-15ey01E3N82uP3Bb-LLK2ieWjjqfaXdGfsqbpHyRI-j-dv-bOdYol131FBqrsB5ycsIuKSvZSxbBYaEy4JIB_QYP66xmeXWOYiFXSRSzphAx4__uS0uw-So_Wm477c3__eFP8NEDTjyrNGQLVsx0GzZrMgf0tv0ZnnvuUHyI564MvbyRabDuWIIziy3y2SP8Pi9LxArWot0vR9-ddYhnkyF9uxjdIYFg7HveCeyOWW88vMuwU1WbYzVtNsV-7ye2H56e_qBjY5ssduBX-6J__oN5cgamozApWKIyQjZZlGc24wNpAyXCjMeaEF1gZSTIMwhLFp5zbWKrrBloKazNFUVImY14tAtr09nU7AE2ZZxLLQi40LyBzFWoE24pNA8sj4w2DQhq0aTady53BBqTdNlz2UkzJWmmTpopb8DJy5T7qm3Hey8f1hJMvQUv0qX4GvC11oHl4zcX239_sQPYIMiVVMVmh7BWzB_MF_igH4vxYn4E662LTvfqqFRjGrvxLY1Xveu_8YL3Wg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB1VKRJcKJ8itMAc4AKyyHq9a-eAUFMaWiWsIhJQb8vGa6eR0qRNtqD2wE_iNzLeXTcCid564Ly2JXufZ54943kAL00uiXVId3MfCyaIojNF24ipQBoCiDCqLOrztS-TRB0dtQcb8Mu_hXFpld4mloY6X2h3R_6Wtwl8oRPofn96xpxqlIuuegmNChY9c_GDjmyrd4cf6P--4ry7P9o7YLWqANNhEBcsVhm55CzMM5vxsbQtJYKMR5qoSMvKUBCkhSVo5lybyCprxloKa3NF1D6zoSt0QCZ_U4Qijhqw2dlPBp-v4haOfZVHPNmiifPAx1HLx3p0-nK5SxFrCxEx_qcnXNPbvyKypaPrbv1vS3QP7taUGnerPXAfNsz8AWx5uQqsrddD-Dl01_4T3HOJ9uWbU4O-JgsuLHbIKx3jx2WZBFewDvn3HOv6sxPcnU1orsXxCRLNx1GtrIGDKRtOJycZJlU-PVbdFnMcDXvYPb-8vECnNzdbPYIvN7IKj6ExX8zNE8C2jHKpBVEz6jeWuQp0zK0i22l5aLRpQstDIdV1bXYnETJL11WlHXpSQk_q0JPyJry-6nJaFSa5rvGOR0xa26hVuoZLE954zK0__3Owp9cP9gJuH4w-9dP-YdLbhjtEMOMqtW4HGsXy3DyDW_p7MV0tn9ebB-HbTYPxN9sgUpk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6iIl6sT6zPOXhSgrvZ7CY9-qqKUoqt4m3ZZpNaqFtpt4Ie_O1O9mFRVBDPm4SQZCbf7Ey-j5A9HQtEHcL-uQ845QjRqUQzotIVGg8I1zIj9bm7Fo2GvL-vNQud01FZ7V6mJPM3DZalKUkPn2JzOHn4hpGMrQPyaY1zn6IPnuEYyNiarpvW3UcawYKhLOISDs6DuWVa87shPl9ME7T5JUGa3Tv1yr9nvEgWCsgJR_kZWSJTOlkmlVLOAQrrXiFvLftbvAsnthA9e5OpoeQsgYGBY_TaD3A-zIrEUnqM918MBT9rF4763cGwlz48AsJgaBfKE9Ds0Vav-xhBI683h7zbIIF26wrq49fXF7B6bP3RKrmtn7VPLmghz0CV5wYpDWSE2Cby4shErCOMI7kbMV8hpnOM8Dj6Bm7QxmOmtG-k0R0luDGxxBgpMh7z1sh0Mkj0OoGa8GOhOEIX7NcRsXRVwAwG545hnla6Spxyb0JVcJdbCY1-OGFdtusb4vqGdn1DViX7H12ecuKO3xpvlRseFjY8ClkN3Z1nJeGr5KDc4MnnHwfb-FPrXTLXPK2H15eNq00yj3AsyAvRtsh0OhzrbTKrntPeaLiTnex3i0T1EQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Convergence+Analysis+of+Batch+Gradient-Based+Learning+Algorithm+for+Training+Pi-Sigma+Network+Based+on+TSK+Fuzzy+Models&rft.jtitle=Neural+processing+letters&rft.date=2016-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=43&rft.issue=3&rft.spage=745&rft.epage=758&rft_id=info:doi/10.1007%2Fs11063-015-9445-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon