Cons-training tensor networks: Embedding and optimization over discrete linear constraints
In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling dis...
Gespeichert in:
| Veröffentlicht in: | SciPost physics Jg. 18; H. 6; S. 192 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
SciPost
01.06.2025
|
| ISSN: | 2542-4653, 2542-4653 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling distributions with support strictly over the feasible space, offering benefits such as reducing the search space in optimization problems, alleviating overfitting, improving training efficiency, and decreasing model size. Central to our approach is the concept of a quantum region, an extension of quantum numbers traditionally used in U(1) U ( 1 ) symmetric tensor networks, adapted to capture any linear constraint, including the unconstrained scenario. We further develop a novel canonical form for these new MPS, which allow for the merging and factorization of tensor blocks according to quantum region fusion rules and permit optimal truncation schemes. Utilizing this canonical form, we apply an unsupervised training strategy to optimize arbitrary objective functions subject to discrete linear constraints. Our method’s efficacy is demonstrated by solving the quadratic knapsack problem, achieving superior performance compared to a leading nonlinear integer programming solver. Additionally, we analyze the complexity and scalability of our approach, demonstrating its potential in addressing complex constrained combinatorial optimization problems. |
|---|---|
| AbstractList | In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling distributions with support strictly over the feasible space, offering benefits such as reducing the search space in optimization problems, alleviating overfitting, improving training efficiency, and decreasing model size. Central to our approach is the concept of a quantum region, an extension of quantum numbers traditionally used in U(1) U ( 1 ) symmetric tensor networks, adapted to capture any linear constraint, including the unconstrained scenario. We further develop a novel canonical form for these new MPS, which allow for the merging and factorization of tensor blocks according to quantum region fusion rules and permit optimal truncation schemes. Utilizing this canonical form, we apply an unsupervised training strategy to optimize arbitrary objective functions subject to discrete linear constraints. Our method’s efficacy is demonstrated by solving the quadratic knapsack problem, achieving superior performance compared to a leading nonlinear integer programming solver. Additionally, we analyze the complexity and scalability of our approach, demonstrating its potential in addressing complex constrained combinatorial optimization problems. In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling distributions with support strictly over the feasible space, offering benefits such as reducing the search space in optimization problems, alleviating overfitting, improving training efficiency, and decreasing model size. Central to our approach is the concept of a quantum region, an extension of quantum numbers traditionally used in $U(1)$ symmetric tensor networks, adapted to capture any linear constraint, including the unconstrained scenario. We further develop a novel canonical form for these new MPS, which allow for the merging and factorization of tensor blocks according to quantum region fusion rules and permit optimal truncation schemes. Utilizing this canonical form, we apply an unsupervised training strategy to optimize arbitrary objective functions subject to discrete linear constraints. Our method's efficacy is demonstrated by solving the quadratic knapsack problem, achieving superior performance compared to a leading nonlinear integer programming solver. Additionally, we analyze the complexity and scalability of our approach, demonstrating its potential in addressing complex constrained combinatorial optimization problems. |
| ArticleNumber | 192 |
| Author | Lopez Piqueres, Javier Chen, Jing |
| Author_xml | – sequence: 1 givenname: Javier surname: Lopez Piqueres fullname: Lopez Piqueres, Javier – sequence: 2 givenname: Jing orcidid: 0000-0003-0538-689X surname: Chen fullname: Chen, Jing |
| BookMark | eNpN0M1KAzEUBeAgFay1jyDMC0ydO_lpxp2UqoWCBbtyEzLJnZraJiUJSn16ayvS1bncA9_iXJOeDx4JuYVqVAMT8u7VuEVIefG-TyOQIzGCpr4g_ZqzumSC097ZfUWGKa2rqqoBGhC8T94mwacyR-2886sio08hFh7zV4gf6b6Yblu09rfS3hZhl93Wfevsgi_CJ8bCumQiZiw2zqOOhTlwRy2nG3LZ6U3C4V8OyPJxupw8l_OXp9nkYV4aCiKXQrSWA2oJVvLxmPJONGCRcqSWdWPZIj8kQyGotQ3Xopa1Rqsbw8YtcDogsxNrg16rXXRbHfcqaKeOjxBXSsfszAaVoFoDFYCUamZsLVvOjKHUdBKEYN3B4ifLxJBSxO7fg0od51ZncyuQSqjD3PQH2dZ6eQ |
| Cites_doi | 10.1007/s10898-023-01345-1 10.1007/s10288-019-00424-y 10.21468/SciPostPhysCodeb.4 10.21468/SciPostPhys.7.5.060 10.48550/arXiv.2006.02516 10.1038/s41467-024-46959-5 10.1088/1742-5468/2013/04/P04008 10.1016/j.aop.2010.09.012 10.3389/fphy.2022.906590 10.1016/j.aop.2012.07.009 10.1103/PhysRevB.86.195114 10.1088/2058-9565/aaba1a 10.1103/PhysRevX.8.031012 10.1137/22M1501787 10.1103/PhysRevB.73.085115 10.48550/arXiv.cond-mat/0407066 10.1007/s10955-015-1276-z 10.21468/SciPostPhysLectNotes.8 10.1038/s42256-021-00401-3 10.1088/2632-2153/ace0f5 10.22331/q-2024-07-25-1425 10.1103/PhysRevB.103.125117 10.1103/PhysRevLett.126.090506 10.26421/QIC8.6-7-6 10.1103/PhysRevB.83.115125 10.1088/1742-5468/2007/08/P08024 10.1103/PhysRevA.74.022320 10.21468/SciPostPhysCodeb.4-r0.3 10.48550/arXiv.2206.03832 10.1103/PhysRevB.85.165146 10.1007/s12532-023-00239-3 10.1088/1367-2630/ab31ef |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.21468/SciPostPhys.18.6.192 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2542-4653 |
| ExternalDocumentID | oai_doaj_org_article_63aa1361e33a4cd28b54cc33cf81664f 10_21468_SciPostPhys_18_6_192 |
| GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 |
| ID | FETCH-LOGICAL-c316t-66bd51ea81d857735f691de35e3d4f78be5d4f4e663dd95a6282aeda9c47b153 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511976700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2542-4653 |
| IngestDate | Fri Oct 03 12:44:37 EDT 2025 Sat Nov 29 07:48:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-66bd51ea81d857735f691de35e3d4f78be5d4f4e663dd95a6282aeda9c47b153 |
| ORCID | 0000-0003-0538-689X |
| OpenAccessLink | https://doaj.org/article/63aa1361e33a4cd28b54cc33cf81664f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_63aa1361e33a4cd28b54cc33cf81664f crossref_primary_10_21468_SciPostPhys_18_6_192 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | SciPost physics |
| PublicationYear | 2025 |
| Publisher | SciPost |
| Publisher_xml | – name: SciPost |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref23 doi: 10.1007/s10898-023-01345-1 – ident: ref12 doi: 10.1007/s10288-019-00424-y – ident: ref25 doi: 10.21468/SciPostPhysCodeb.4 – ident: ref28 doi: 10.21468/SciPostPhys.7.5.060 – ident: ref18 doi: 10.48550/arXiv.2006.02516 – ident: ref20 doi: 10.1038/s41467-024-46959-5 – ident: ref13 doi: 10.1088/1742-5468/2013/04/P04008 – ident: ref11 doi: 10.1016/j.aop.2010.09.012 – ident: ref30 doi: 10.3389/fphy.2022.906590 – ident: ref8 doi: 10.1016/j.aop.2012.07.009 – ident: ref7 doi: 10.1103/PhysRevB.86.195114 – ident: ref15 doi: 10.1088/2058-9565/aaba1a – ident: ref14 doi: 10.1103/PhysRevX.8.031012 – ident: ref32 doi: 10.1137/22M1501787 – ident: ref1 doi: 10.1103/PhysRevB.73.085115 – ident: ref3 doi: 10.48550/arXiv.cond-mat/0407066 – ident: ref27 doi: 10.1007/s10955-015-1276-z – ident: ref9 doi: 10.21468/SciPostPhysLectNotes.8 – ident: ref21 doi: 10.1038/s42256-021-00401-3 – ident: ref10 doi: 10.1088/2632-2153/ace0f5 – ident: ref19 doi: 10.22331/q-2024-07-25-1425 – ident: ref17 doi: 10.1103/PhysRevB.103.125117 – ident: ref29 doi: 10.1103/PhysRevLett.126.090506 – ident: ref4 doi: 10.26421/QIC8.6-7-6 – ident: ref6 doi: 10.1103/PhysRevB.83.115125 – ident: ref2 doi: 10.1088/1742-5468/2007/08/P08024 – ident: ref5 doi: 10.1103/PhysRevA.74.022320 – ident: ref26 doi: 10.21468/SciPostPhysCodeb.4-r0.3 – ident: ref31 doi: 10.48550/arXiv.2206.03832 – ident: ref22 doi: 10.1103/PhysRevB.85.165146 – ident: ref24 doi: 10.1007/s12532-023-00239-3 – ident: ref16 doi: 10.1088/1367-2630/ab31ef |
| SSID | ssj0002119165 |
| Score | 2.2934155 |
| Snippet | In this study, we introduce a novel family of tensor networks, termed constrained matrix product states (MPS), designed to incorporate exactly arbitrary... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 192 |
| Title | Cons-training tensor networks: Embedding and optimization over discrete linear constraints |
| URI | https://doaj.org/article/63aa1361e33a4cd28b54cc33cf81664f |
| Volume | 18 |
| WOSCitedRecordID | wos001511976700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2542-4653 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002119165 issn: 2542-4653 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQAokF8RTlJQ-saeX4EYcNUCsGqBg6VCyRY58lhqYoKYz8du6SFrKxsCRSFFnRd8ndd_HdfYzdpKAgmCgTa2xMkFJD4kDrxEgoHVDI8e0Q16dsOrXzef7Sk_qimrBuPHAH3MhI54Q0AqR0yofUllp5L6WPtOOlInlfZD29ZIp8cDu3zOiuZYe0q-0IvxXSv6XCyqGwQzPstj9_g1FvZn8bXCYHbH_NCvld9zSHbAuqI7bbVmf65pi9kqxmslFz4FR0vqx51VVwN7d8vCghUBDirgp8iV5gsW6v5FShyan1tkZ2zIlTupp7IoW02qo5YbPJePbwmKxFERIvhVklxpRBC3DIM63OMqmjyUUAqUEGFTNbgsazAmQSIeTaGcypHASXe5WV6N5O2Xa1rOCM8TRqExwogTkThjJlnYxeO6l8RF6QiQEbbsAp3rvRFwWmDC2aRQ_NQtjCFIjmgN0ThD830-Tq9gLas1jbs_jLnuf_scgF20tJp7f9W3LJtlf1B1yxHf-5emvq6_ZVwePz1_gb35XHyw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cons-training+tensor+networks%3A+Embedding+and+optimization+over+discrete+linear+constraints&rft.jtitle=SciPost+physics&rft.au=Lopez+Piqueres%2C+Javier&rft.au=Chen%2C+Jing&rft.date=2025-06-01&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=18&rft.issue=6&rft_id=info:doi/10.21468%2FSciPostPhys.18.6.192&rft.externalDBID=n%2Fa&rft.externalDocID=10_21468_SciPostPhys_18_6_192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |