Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittab...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics Jg. 319; H. Suppl 1; S. S140 - S155 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
Moscow
Pleiades Publishing
01.12.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0081-5438, 1531-8605 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the
22
𝜀
-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019. |
|---|---|
| Bibliographie: | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| ISSN: | 0081-5438 1531-8605 |
| DOI: | 10.1134/S0081543822060128 |