Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem

For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittab...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the Steklov Institute of Mathematics Ročník 319; číslo Suppl 1; s. S140 - S155
Hlavní autori: Khachay, M. Yu, Neznakhina, E. D., Ryzhenko, K. V.
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.12.2022
Springer Nature B.V
Predmet:
ISSN:0081-5438, 1531-8605
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the 22 𝜀 -approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019.
AbstractList For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the 22 𝜀 -approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019.
For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the 22ðoe€-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019.
Author Khachay, M. Yu
Neznakhina, E. D.
Ryzhenko, K. V.
Author_xml – sequence: 1
  givenname: M. Yu
  surname: Khachay
  fullname: Khachay, M. Yu
  email: mkhachay@imm.uran.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
– sequence: 2
  givenname: E. D.
  surname: Neznakhina
  fullname: Neznakhina, E. D.
  email: kseniarizhenko@gmail.com
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University
– sequence: 3
  givenname: K. V.
  surname: Ryzhenko
  fullname: Ryzhenko, K. V.
  email: eneznakhina@yandex.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
BookMark eNp9kd9KwzAUxoNMcJs-gHcBr6tJk_67nMOpMFDcvC5pe7pltMlMUnHP4suaboqgaG4C-c7vOyffGaGB0goQOqfkklLGrxaEpDTiLA1DEhMapkdoSCNGgzQm0QANezno9RM0snZDCI8Sng3R-1Qr64RywUyUThs82W6NfpOtcFIrPGlW2ki3bi2uvSjwAowEi3WNp7otpBKekaLBT7pzUq3wo9FFA778WliosLdwa8BPUHXl3tDp_cPE7toWnJElXhrxCk3PLkQDthXqy-QUHdeisXD2eY_R8-xmOb0L5g-399PJPCgZjV0Q0ygqsiKrkriEgvCUE8pIwdLKH69VZRTHcQEiLDKaQBgBoxnNCK94RpJKsDG6OPj6n790YF2-0Z1RvmUeJknCmc-U-Sp6qCqNttZAnW-Nj8nsckryfgf5rx14JvnBlNLtk3VGyOZfMjyQ1ndRKzDfM_0NfQA5G51l
CitedBy_id crossref_primary_10_1134_S1064562423701454
crossref_primary_10_1007_s10479_025_06641_5
crossref_primary_10_1134_S008154382306010X
Cites_doi 10.1007/s00453-014-9906-4
10.1007/s10898-020-00990-0
10.1007/BF01581256
10.1016/0304-3975(77)90012-3
10.1007/s10479-017-2409-3
10.1287/MNSC.6.1.80
10.1007/s12532-016-0108-8
10.1016/j.cor.2020.105004
10.21538/0134-4889-2019-25-4-235-248
10.1007/s10288-020-00433-2
10.1016/j.dam.2011.12.021
10.1145/2213977.2214038
10.1145/3188745.3188824
10.1145/3357713.3384233
10.1145/321958.321975
10.1287/opre.2.4.393
10.1134/S0081543816090054
10.1134/S0005117919110092
10.1287/moor.2019.1002
10.1016/j.cor.2017.05.010
10.1145/258533.258602
10.1016/S0895-7177(96)00187-2
10.15514/ISPRAS-2019-31(4)-8
10.1111/itor.12604
10.1007/978-3-030-17953-3_27
10.1007/s10472-019-09626-w
10.1287/opre.2017.1603
10.1007/978-3-319-26626-8_9
10.1007/978-3-030-91059-4_10
10.1016/j.cor.2018.07.021
10.1002/net.21742
10.1112/jlms/s1-10.37.26
10.4230/LIPIcs.STACS.2013.341
10.1142/S0129054110007623
10.1002/net.3230190602
10.1007/978-3-319-93800-4_6
10.1080/00207543.2017.1421784
ContentType Journal Article
Conference Proceeding
Copyright Pleiades Publishing, Ltd. 2022
Pleiades Publishing, Ltd. 2022.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022
– notice: Pleiades Publishing, Ltd. 2022.
DBID AAYXX
CITATION
DOI 10.1134/S0081543822060128
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8605
EndPage S155
ExternalDocumentID 10_1134_S0081543822060128
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
YNT
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c316t-6155b9b9d76ceb04840130b38dddd155dc5666bea2b917e25e3191904d4907da3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000944216100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0081-5438
IngestDate Thu Sep 25 00:55:32 EDT 2025
Tue Nov 18 21:11:11 EST 2025
Sat Nov 29 04:53:30 EST 2025
Fri Feb 21 02:44:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords prize collecting traveling salesman problem
polynomial-time reduction
asymmetric traveling salesman problem
generalized traveling salesman problem
vehicle routing problem
constant-factor approximation algorithm
Steiner cycle problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-6155b9b9d76ceb04840130b38dddd155dc5666bea2b917e25e3191904d4907da3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 2777432203
PQPubID 2044165
ParticipantIDs proquest_journals_2777432203
crossref_primary_10_1134_S0081543822060128
crossref_citationtrail_10_1134_S0081543822060128
springer_journals_10_1134_S0081543822060128
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Proceedings of the Steklov Institute of Mathematics
PublicationTitleAbbrev Proc. Steklov Inst. Math
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References HallPOn representatives of subsetsJ. London Math. Soc.19351012630158169410.1112/jlms/s1-10.37.260010.34503
MorASperanzaMGVehicle routing problems over time: A survey4OR-Q J. Oper. Res.2020182129149409996910.1007/s10288-020-00433-2
SteinováMApproximability of the minimum Steiner Cycle ProblemComput. Inform.20102961349135727993811399.68077
VerbeeckCVansteenwegenPAghezzafE-HThe time-dependent orienteering problem with time windows: A fast ant colony systemAnn. Oper. Res.2017254481505366575510.1007/s10479-017-2409-31369.90016
DantzigGBFulkersonDRJohnsonSMSolution of a large-scale traveling-salesman problemJ. Oper. Res. Soc. America1954243934107093210.1287/opre.2.4.3931414.90372
PaulAFreundDFerberAShmoysDWilliamsonDBudgeted prize-collecting traveling salesman and minimum spanning tree problemsMath. Oper. Res.2019452576590410027510.1287/moor.2019.10021456.90137
PecinDPessoaAPoggiMUchoaEImproved branch-cut-and-price for capacitated vehicle routingMath. Program. Comput.20179161100361301410.1007/s12532-016-0108-81368.90111
FrifitaSMasmoudiMVNS methods for home care routing and scheduling problem with temporal dependencies, and multiple structures and specialtiesInternat. Trans. Oper. Res.2020271291313399306110.1111/itor.12604
TraubVVygenJAn improved approximation algorithm for ATSPProceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 202020200113414173810.1145/3357713.33842331489.68404
BalasEThe prize collecting traveling salesman problemNetworks1989196621636101374910.1002/net.32301906020676.90089
BhattacharyaBĆustićARafieyARafieyASokolVApproximation algorithms for generalized MST and TSP in grid clustersCombinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 20152015ChamSpringer10.1007/978-3-319-26626-8_91478.90101
ChungSHSahBLeeJOptimization for drone and drone-truck combined operations: A review of the state of the art and future directionsComput. Oper. Res.2020123411678010.1016/j.cor.2020.1050041458.90072
AsanoTKatohNTamakiHTokuyamaTCovering points in the plane by $$K$$-tours: Towards a polynomial time approximation scheme for general $$K$$Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 19971997New YorkACM10.1145/258533.258602
KhachaiMYuOgorodnikovjYuYuHaimovich–Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces with a fixed doubling dimensionTrudy Inst. Mat. i Mekh. UrO RAN201925423524810.21538/0134-4889-2019-25-4-235-248
BartalYGottliebLAKrauthgamerRThe traveling salesman problem: Low-dimensionality implies a polynomial time approximation schemeSIAM J. Comput.20164515631581354202310.1145/2213977.22140381350.68288
NazariMOroojlooyATakacMSnyderLVReinforcement learning for solving the vehicle routing problemProceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 20182018098619871
PessoaASadykovRUchoaEVanderbeckFA generic exact solver for vehicle routing and related problemsMath. Program.2020183483523413782910.1007/978-3-030-17953-3_271450.90017
WahlströmMAbusing the Tutte Matrix: An algebraic instance compression for the $$K$$-set-cycle problemProceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 201320130341352308999410.4230/LIPIcs.STACS.2013.3411354.68135
QiuMFuZEgleseRTangQA Tabu search algorithm for the Vehicle Routing Problem with discrete split deliveries and pickupsComput. Oper. Res.2018100102116385486710.1016/j.cor.2018.07.0211458.90130
ZhukovaGNUlyanovMVFomichevMIA hybrid exact algorithm for the asymmetric Traveling Salesman Problem: Construction and a statistical study of computational efficiencyAutomat. Remote Control201980112054206710.1134/S0005117919110092
GutinGPunnenAPThe Traveling Salesman Problem and Its Variations2007New YorkSpringer1113.90134
ChristofidesNWorst-Case Analysis of a New Heuristic for the Traveling Salesman Problem1976PittsburghCarnegie Mellon Univ.
AvdoshinSBeresnevaELocal search metaheuristics for capacitated vehicle routing problem: A comparative studyTrudy Inst. Sist. Program. RAN201931412113810.15514/ISPRAS-2019-31(4)-8
SerdyukovAIOn some extremal routes in graphsUpravl. Sist.19781776790475.90080
SahniSGonzalesT$$P$$-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152
SvenssonOTarnawskiJVéghLA constant-factor approximation algorithm for the asymmetric Traveling Salesman ProblemProceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 201820180204213382624710.1145/3188745.31888241428.90146
BevernRvanKomusiewiczCSorgeMA parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experimentsNetworks2017703262278370252810.1002/net.21742
KhachayMNeznakhinaKComplexity and approximability of the Euclidean generalized traveling salesman problem in grid clustersAnn. Math. Artif. Intell.20208815369405813910.1007/s10472-019-09626-w1430.90491
AsadpourAGoemansMMadryAGharanSOSaberiAAn $$O(\log n/\log\log n)$$-approximation algorithm for the Asymmetric Traveling Salesman ProblemOper. Res.201765410431061368180810.1287/opre.2017.16031380.90229
ChentsovAGKhachayMYuKhachayDMAn exact algorithm with linear complexity for a problem of visiting megalopolisesProc. Steklov Inst. Math.201629513846346811310.1134/S0081543816090054
AdamaszekACzumajALingasAPTAS for $$k$$-Tour Cover Problem on the plane for moderately large values of $$k$$Internat. J. Foundations Comp. Sci.2010216893904274000110.1142/S01290541100076231207.90013
ChentsovAGChentsovPAPetuninAASesekinANModel of megalopolises in the tool path optimisation for CNC plate cutting machinesInternat. J. Product. Res.201856144819483010.1080/00207543.2017.1421784
KhachayMNeznakhinaKTowards tractability of the Euclidean Generalized Traveling Salesman Problem in grid clusters defined by a grid of bounded heightOptimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 20182018ChamSpringer10.1007/978-3-319-93800-4_6
BienstockDGoemansMXSimchi-LeviDWilliamsonDA note on the prize collecting traveling salesman problemMath. Program.1993591413420122682610.1007/BF015812560793.90089
TothPVigoDThe Vehicle Routing Problem2014PhiladelphiaSIAM
ArchettiCBianchessiNSperanzaMOptimal solutions for routing problems with profitsDiscrete Appl. Math.2013161547557301530010.1016/j.dam.2011.12.0211260.90156
KhachayMUkolovSPetuninAProblem-specific branch-and-bound algorithms for the precedence constrained generalized Traveling Salesman ProblemOptimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 20212021039239810.1007/978-3-030-91059-4_10
SmithSImesonFGLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman ProblemComput. Oper. Res.201787119367194810.1016/j.cor.2017.05.0101391.90535
DantzigGBRamserJHThe truck dispatching problemManag. Sci.195961809111581710.1287/MNSC.6.1.800995.90560
PapadimitriouCEuclidean TSP is $$NP$$-completeTheoret. Comput. Sci.19774323724445555010.1016/0304-3975(77)90012-30386.90057
ChentsovAGKorotaevaLNThe dynamic programming method in the generalized traveling salesman problemMath. Comp. Model.199725193105143464710.1016/S0895-7177(96)00187-20881.90118
DasAMathieuCA quasipolynomial time approximation scheme for Euclidean Capacitated Vehicle RoutingAlgorithmica2015731115142336178210.1007/s00453-014-9906-41319.90055
KhachayMOgorodnikovYuKhachayDEfficient approximation of the metric CVRP in spaces of fixed doubling dimensionJ. Glob. Optim.2021803679710428274310.1007/s10898-020-00990-01475.90082
M Qiu (8275_CR14) 2018; 100
M Khachay (8275_CR25) 2021; 80
A Pessoa (8275_CR12) 2020; 183
M Khachay (8275_CR43) 2020; 88
GB Dantzig (8275_CR7) 1959; 6
A Das (8275_CR34) 2015; 73
MYu Khachai (8275_CR36) 2019; 25
O Svensson (8275_CR29) 2018; 0
B Bhattacharya (8275_CR42) 2015
T Asano (8275_CR23) 1997
A Mor (8275_CR3) 2020; 18
C Verbeeck (8275_CR18) 2017; 254
S Sahni (8275_CR22) 1976; 23
D Pecin (8275_CR11) 2017; 9
GB Dantzig (8275_CR6) 1954; 2
AG Chentsov (8275_CR8) 1997; 25
S Frifita (8275_CR15) 2020; 27
C Papadimitriou (8275_CR20) 1977; 4
A Asadpour (8275_CR28) 2017; 65
P Hall (8275_CR37) 1935; 10
S Smith (8275_CR16) 2017; 87
S Avdoshin (8275_CR13) 2019; 31
M Khachay (8275_CR21) 2018
AG Chentsov (8275_CR9) 2016; 295
A Paul (8275_CR39) 2019; 45
SH Chung (8275_CR5) 2020; 123
(8275_CR2) 2014
D Bienstock (8275_CR40) 1993; 59
GN Zhukova (8275_CR19) 2019; 80
Rvan Bevern (8275_CR31) 2017; 70
(8275_CR1) 2007
V Traub (8275_CR30) 2020; 0
AI Serdyukov (8275_CR27) 1978; 17
AG Chentsov (8275_CR4) 2018; 56
Y Bartal (8275_CR24) 2016; 45
A Adamaszek (8275_CR35) 2010; 21
E Balas (8275_CR38) 1989; 19
M Steinová (8275_CR33) 2010; 29
C Archetti (8275_CR10) 2013; 161
M Khachay (8275_CR41) 2021; 0
M Nazari (8275_CR17) 2018; 0
N Christofides (8275_CR26) 1976
M Wahlström (8275_CR32) 2013; 0
References_xml – reference: TraubVVygenJAn improved approximation algorithm for ATSPProceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 202020200113414173810.1145/3357713.33842331489.68404
– reference: DantzigGBRamserJHThe truck dispatching problemManag. Sci.195961809111581710.1287/MNSC.6.1.800995.90560
– reference: TothPVigoDThe Vehicle Routing Problem2014PhiladelphiaSIAM
– reference: KhachayMNeznakhinaKComplexity and approximability of the Euclidean generalized traveling salesman problem in grid clustersAnn. Math. Artif. Intell.20208815369405813910.1007/s10472-019-09626-w1430.90491
– reference: SerdyukovAIOn some extremal routes in graphsUpravl. Sist.19781776790475.90080
– reference: VerbeeckCVansteenwegenPAghezzafE-HThe time-dependent orienteering problem with time windows: A fast ant colony systemAnn. Oper. Res.2017254481505366575510.1007/s10479-017-2409-31369.90016
– reference: ChungSHSahBLeeJOptimization for drone and drone-truck combined operations: A review of the state of the art and future directionsComput. Oper. Res.2020123411678010.1016/j.cor.2020.1050041458.90072
– reference: BartalYGottliebLAKrauthgamerRThe traveling salesman problem: Low-dimensionality implies a polynomial time approximation schemeSIAM J. Comput.20164515631581354202310.1145/2213977.22140381350.68288
– reference: PecinDPessoaAPoggiMUchoaEImproved branch-cut-and-price for capacitated vehicle routingMath. Program. Comput.20179161100361301410.1007/s12532-016-0108-81368.90111
– reference: ChentsovAGChentsovPAPetuninAASesekinANModel of megalopolises in the tool path optimisation for CNC plate cutting machinesInternat. J. Product. Res.201856144819483010.1080/00207543.2017.1421784
– reference: KhachayMNeznakhinaKTowards tractability of the Euclidean Generalized Traveling Salesman Problem in grid clusters defined by a grid of bounded heightOptimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 20182018ChamSpringer10.1007/978-3-319-93800-4_6
– reference: SahniSGonzalesT$$P$$-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152
– reference: HallPOn representatives of subsetsJ. London Math. Soc.19351012630158169410.1112/jlms/s1-10.37.260010.34503
– reference: SmithSImesonFGLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman ProblemComput. Oper. Res.201787119367194810.1016/j.cor.2017.05.0101391.90535
– reference: ChentsovAGKorotaevaLNThe dynamic programming method in the generalized traveling salesman problemMath. Comp. Model.199725193105143464710.1016/S0895-7177(96)00187-20881.90118
– reference: PapadimitriouCEuclidean TSP is $$NP$$-completeTheoret. Comput. Sci.19774323724445555010.1016/0304-3975(77)90012-30386.90057
– reference: SvenssonOTarnawskiJVéghLA constant-factor approximation algorithm for the asymmetric Traveling Salesman ProblemProceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 201820180204213382624710.1145/3188745.31888241428.90146
– reference: ChentsovAGKhachayMYuKhachayDMAn exact algorithm with linear complexity for a problem of visiting megalopolisesProc. Steklov Inst. Math.201629513846346811310.1134/S0081543816090054
– reference: BienstockDGoemansMXSimchi-LeviDWilliamsonDA note on the prize collecting traveling salesman problemMath. Program.1993591413420122682610.1007/BF015812560793.90089
– reference: WahlströmMAbusing the Tutte Matrix: An algebraic instance compression for the $$K$$-set-cycle problemProceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 201320130341352308999410.4230/LIPIcs.STACS.2013.3411354.68135
– reference: DasAMathieuCA quasipolynomial time approximation scheme for Euclidean Capacitated Vehicle RoutingAlgorithmica2015731115142336178210.1007/s00453-014-9906-41319.90055
– reference: AsanoTKatohNTamakiHTokuyamaTCovering points in the plane by $$K$$-tours: Towards a polynomial time approximation scheme for general $$K$$Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 19971997New YorkACM10.1145/258533.258602
– reference: DantzigGBFulkersonDRJohnsonSMSolution of a large-scale traveling-salesman problemJ. Oper. Res. Soc. America1954243934107093210.1287/opre.2.4.3931414.90372
– reference: ArchettiCBianchessiNSperanzaMOptimal solutions for routing problems with profitsDiscrete Appl. Math.2013161547557301530010.1016/j.dam.2011.12.0211260.90156
– reference: AvdoshinSBeresnevaELocal search metaheuristics for capacitated vehicle routing problem: A comparative studyTrudy Inst. Sist. Program. RAN201931412113810.15514/ISPRAS-2019-31(4)-8
– reference: AsadpourAGoemansMMadryAGharanSOSaberiAAn $$O(\log n/\log\log n)$$-approximation algorithm for the Asymmetric Traveling Salesman ProblemOper. Res.201765410431061368180810.1287/opre.2017.16031380.90229
– reference: AdamaszekACzumajALingasAPTAS for $$k$$-Tour Cover Problem on the plane for moderately large values of $$k$$Internat. J. Foundations Comp. Sci.2010216893904274000110.1142/S01290541100076231207.90013
– reference: ZhukovaGNUlyanovMVFomichevMIA hybrid exact algorithm for the asymmetric Traveling Salesman Problem: Construction and a statistical study of computational efficiencyAutomat. Remote Control201980112054206710.1134/S0005117919110092
– reference: BalasEThe prize collecting traveling salesman problemNetworks1989196621636101374910.1002/net.32301906020676.90089
– reference: KhachaiMYuOgorodnikovjYuYuHaimovich–Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces with a fixed doubling dimensionTrudy Inst. Mat. i Mekh. UrO RAN201925423524810.21538/0134-4889-2019-25-4-235-248
– reference: KhachayMUkolovSPetuninAProblem-specific branch-and-bound algorithms for the precedence constrained generalized Traveling Salesman ProblemOptimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 20212021039239810.1007/978-3-030-91059-4_10
– reference: PessoaASadykovRUchoaEVanderbeckFA generic exact solver for vehicle routing and related problemsMath. Program.2020183483523413782910.1007/978-3-030-17953-3_271450.90017
– reference: BhattacharyaBĆustićARafieyARafieyASokolVApproximation algorithms for generalized MST and TSP in grid clustersCombinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 20152015ChamSpringer10.1007/978-3-319-26626-8_91478.90101
– reference: ChristofidesNWorst-Case Analysis of a New Heuristic for the Traveling Salesman Problem1976PittsburghCarnegie Mellon Univ.
– reference: SteinováMApproximability of the minimum Steiner Cycle ProblemComput. Inform.20102961349135727993811399.68077
– reference: GutinGPunnenAPThe Traveling Salesman Problem and Its Variations2007New YorkSpringer1113.90134
– reference: KhachayMOgorodnikovYuKhachayDEfficient approximation of the metric CVRP in spaces of fixed doubling dimensionJ. Glob. Optim.2021803679710428274310.1007/s10898-020-00990-01475.90082
– reference: BevernRvanKomusiewiczCSorgeMA parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experimentsNetworks2017703262278370252810.1002/net.21742
– reference: QiuMFuZEgleseRTangQA Tabu search algorithm for the Vehicle Routing Problem with discrete split deliveries and pickupsComput. Oper. Res.2018100102116385486710.1016/j.cor.2018.07.0211458.90130
– reference: NazariMOroojlooyATakacMSnyderLVReinforcement learning for solving the vehicle routing problemProceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 20182018098619871
– reference: FrifitaSMasmoudiMVNS methods for home care routing and scheduling problem with temporal dependencies, and multiple structures and specialtiesInternat. Trans. Oper. Res.2020271291313399306110.1111/itor.12604
– reference: PaulAFreundDFerberAShmoysDWilliamsonDBudgeted prize-collecting traveling salesman and minimum spanning tree problemsMath. Oper. Res.2019452576590410027510.1287/moor.2019.10021456.90137
– reference: MorASperanzaMGVehicle routing problems over time: A survey4OR-Q J. Oper. Res.2020182129149409996910.1007/s10288-020-00433-2
– volume: 0
  start-page: 9861
  year: 2018
  ident: 8275_CR17
  publication-title: Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 2018
– volume: 73
  start-page: 115
  issue: 1
  year: 2015
  ident: 8275_CR34
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9906-4
– volume: 80
  start-page: 679
  issue: 3
  year: 2021
  ident: 8275_CR25
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-020-00990-0
– volume-title: The Traveling Salesman Problem and Its Variations
  year: 2007
  ident: 8275_CR1
– volume: 59
  start-page: 413
  issue: 1
  year: 1993
  ident: 8275_CR40
  publication-title: Math. Program.
  doi: 10.1007/BF01581256
– volume: 4
  start-page: 237
  issue: 3
  year: 1977
  ident: 8275_CR20
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(77)90012-3
– volume: 254
  start-page: 481
  year: 2017
  ident: 8275_CR18
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-017-2409-3
– volume: 6
  start-page: 80
  issue: 1
  year: 1959
  ident: 8275_CR7
  publication-title: Manag. Sci.
  doi: 10.1287/MNSC.6.1.80
– volume: 9
  start-page: 61
  issue: 1
  year: 2017
  ident: 8275_CR11
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-016-0108-8
– volume: 123
  year: 2020
  ident: 8275_CR5
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105004
– volume: 25
  start-page: 235
  issue: 4
  year: 2019
  ident: 8275_CR36
  publication-title: Trudy Inst. Mat. i Mekh. UrO RAN
  doi: 10.21538/0134-4889-2019-25-4-235-248
– volume: 18
  start-page: 129
  issue: 2
  year: 2020
  ident: 8275_CR3
  publication-title: 4OR-Q J. Oper. Res.
  doi: 10.1007/s10288-020-00433-2
– volume: 161
  start-page: 547
  year: 2013
  ident: 8275_CR10
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2011.12.021
– volume: 45
  start-page: 1563
  year: 2016
  ident: 8275_CR24
  publication-title: SIAM J. Comput.
  doi: 10.1145/2213977.2214038
– volume: 0
  start-page: 204
  year: 2018
  ident: 8275_CR29
  publication-title: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 2018
  doi: 10.1145/3188745.3188824
– volume: 0
  start-page: 1
  year: 2020
  ident: 8275_CR30
  publication-title: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 2020
  doi: 10.1145/3357713.3384233
– volume: 23
  start-page: 555
  issue: 3
  year: 1976
  ident: 8275_CR22
  publication-title: J. ACM
  doi: 10.1145/321958.321975
– volume: 2
  start-page: 393
  issue: 4
  year: 1954
  ident: 8275_CR6
  publication-title: J. Oper. Res. Soc. America
  doi: 10.1287/opre.2.4.393
– volume: 295
  start-page: 38
  issue: 1
  year: 2016
  ident: 8275_CR9
  publication-title: Proc. Steklov Inst. Math.
  doi: 10.1134/S0081543816090054
– volume-title: Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem
  year: 1976
  ident: 8275_CR26
– volume-title: The Vehicle Routing Problem
  year: 2014
  ident: 8275_CR2
– volume: 80
  start-page: 2054
  issue: 11
  year: 2019
  ident: 8275_CR19
  publication-title: Automat. Remote Control
  doi: 10.1134/S0005117919110092
– volume: 45
  start-page: 576
  issue: 2
  year: 2019
  ident: 8275_CR39
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2019.1002
– volume: 87
  start-page: 1
  year: 2017
  ident: 8275_CR16
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.05.010
– volume: 29
  start-page: 1349
  issue: 6
  year: 2010
  ident: 8275_CR33
  publication-title: Comput. Inform.
– volume-title: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 1997
  year: 1997
  ident: 8275_CR23
  doi: 10.1145/258533.258602
– volume: 25
  start-page: 93
  issue: 1
  year: 1997
  ident: 8275_CR8
  publication-title: Math. Comp. Model.
  doi: 10.1016/S0895-7177(96)00187-2
– volume: 31
  start-page: 121
  issue: 4
  year: 2019
  ident: 8275_CR13
  publication-title: Trudy Inst. Sist. Program. RAN
  doi: 10.15514/ISPRAS-2019-31(4)-8
– volume: 27
  start-page: 291
  issue: 1
  year: 2020
  ident: 8275_CR15
  publication-title: Internat. Trans. Oper. Res.
  doi: 10.1111/itor.12604
– volume: 183
  start-page: 483
  year: 2020
  ident: 8275_CR12
  publication-title: Math. Program.
  doi: 10.1007/978-3-030-17953-3_27
– volume: 88
  start-page: 53
  issue: 1
  year: 2020
  ident: 8275_CR43
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-019-09626-w
– volume: 65
  start-page: 1043
  issue: 4
  year: 2017
  ident: 8275_CR28
  publication-title: Oper. Res.
  doi: 10.1287/opre.2017.1603
– volume-title: Combinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 2015
  year: 2015
  ident: 8275_CR42
  doi: 10.1007/978-3-319-26626-8_9
– volume: 0
  start-page: 392
  year: 2021
  ident: 8275_CR41
  publication-title: Optimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 2021
  doi: 10.1007/978-3-030-91059-4_10
– volume: 100
  start-page: 102
  year: 2018
  ident: 8275_CR14
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2018.07.021
– volume: 70
  start-page: 262
  issue: 3
  year: 2017
  ident: 8275_CR31
  publication-title: Networks
  doi: 10.1002/net.21742
– volume: 10
  start-page: 26
  issue: 1
  year: 1935
  ident: 8275_CR37
  publication-title: J. London Math. Soc.
  doi: 10.1112/jlms/s1-10.37.26
– volume: 0
  start-page: 341
  year: 2013
  ident: 8275_CR32
  publication-title: Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 2013
  doi: 10.4230/LIPIcs.STACS.2013.341
– volume: 21
  start-page: 893
  issue: 6
  year: 2010
  ident: 8275_CR35
  publication-title: Internat. J. Foundations Comp. Sci.
  doi: 10.1142/S0129054110007623
– volume: 19
  start-page: 621
  issue: 6
  year: 1989
  ident: 8275_CR38
  publication-title: Networks
  doi: 10.1002/net.3230190602
– volume-title: Optimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 2018
  year: 2018
  ident: 8275_CR21
  doi: 10.1007/978-3-319-93800-4_6
– volume: 17
  start-page: 76
  year: 1978
  ident: 8275_CR27
  publication-title: Upravl. Sist.
– volume: 56
  start-page: 4819
  issue: 14
  year: 2018
  ident: 8275_CR4
  publication-title: Internat. J. Product. Res.
  doi: 10.1080/00207543.2017.1421784
SSID ssj0045749
Score 2.2751646
Snippet For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage S140
SubjectTerms Algorithms
Approximation
Asymmetry
Combinatorial analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Optimization
Polynomials
Route planning
Traveling salesman problem
Vehicle routing
Title Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
URI https://link.springer.com/article/10.1134/S0081543822060128
https://www.proquest.com/docview/2777432203
Volume 319
WOSCitedRecordID wos000944216100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1531-8605
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045749
  issn: 0081-5438
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMTyFISO6-xVFQMgKq2VN2i2HGhUpOiOiD4LfxZzk7SiqcEGWPnYuXsu-9yL4ROR56QTHqM8NhihPkjTjh1KAmSeGRzTwa-CZAdXPu3t8FwGHbKPG5VRbtXLkkjqYu-I8zk9IK-p6DRdA0RJ1hGK6DtAn0au71BJX6Z65eYN7CJnl66Mr8l8VEZLRDmJ6eo0TXtzX-tcgttlNASN4u9sI2WZLaD1m_mdVnVLnprFXAwJ23TZwc3dUnxl3GRv4ibk_vpbJw_pAoDlsUx1v_OpMLTEQa5ATa0ttBhw2IdRwSrwp2iHY3CF6AMEwwk4GW4q8vBGoL51Nxoqtc01a27BO7rdkc6BR73QDWpNM4qInvorn3Zb12Rsj0DEdT2cqI9mjzkYeIDvzlIAm2qWZwGCVwwlgiAih6XscPBJpSOK-G4A_5gCQOLPInpPqpl00weIAxSwXUFTaQjOEhui9s0dmUI5pWIubS9OrIqPkWirF2uW2hMImPDUBZ9-e51dDZ_5LEo3PHb5EbF_Kg8wypyfIDGIO8sWkfnFbMXwz8SO_zT7CO05uiMChMh00C1fPYkj9GqeM7HanZitvY7adTyFw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sAJZCmJnaXHUlGBKBWCgrhFseNCpS6oDgi-hZ9l7CQgVglyjJ2JlbFn3mQ2gL1uIBVXAacicTjlYVdQwTxGozTpuiJQUWgDZK9bYbsd3dzUzos8bl1Gu5cuSSup874j3Ob0or5nqNFMDREvmoQpjgrLxPFdXF6X4pf7YYF5I5ea6YUr81sSH5XRO8L85BS1uqa58K9VLsJ8AS1JPd8LSzChhsswd_ZWl1WvwEsjh4MZbdo-O6RuSoo_9fL8RVLv347GvexuoAliWZIQ8-9MaTLqEpQbaEMbCx03LDFxRLgqcp63o9HkEJVhSpAEvoxcmHKwlmA2sjfq-nkwMK27JOmYdkcmBZ5comrSg2RYElmFq-ZRp3FMi_YMVDI3yKjxaIqaqKUh8lugJDCmmiNYlOKFY6lEqBgIlXgCbULl-QqPO-IPnnK0yNOErUFlOBqqdSAoFXxfslR5UqDkdoTLEl_V0LySiVBuUAWn5FMsi9rlpoVGP7Y2DOPxl-9ehf23R-7zwh2_Td4qmR8XZ1jHXojQGOWdw6pwUDL7ffhHYht_mr0LM8eds1bcOmmfbsKsZ7IrbLTMFlSy8YPahmn5mPX0eMdu81fKaPT7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_wYQw-KKCGE4R94Amzse1uP-7xQC8a4HIBJLw13Y_qJVyP3FaCf4v_rDPbFiKiiaGP7Xa66U5n5tfZmR_AbploK20iuSoCyWVaKq5EJHhmijJUic1Sv0H2_CgdjbKLi_645Tl13W73LiXZ1DRQl6aqfn9lypaDRPr6XvT9Ar0b9ROJskVYlsQZRHD99LwzxTJO2_g3CzkNb9OaD4r43THdRZv3EqTe7wxfPHrGq_C8DTnZoNGRNViw1To8O77t1-pews-DJkys-dDz77ABtRq_mTR1jWxw-XU2n9Tfpo5hjMsKRv_UrGOzkqE9QWxNyB0VmdH-IpwhGzc0NY7to5M0DEXgw9gJtYn1AuuZPzFwP6ZTovTS7IxokKg0np2iy3LTouqEvIIvw49nB594S9vAtQiTmlOmU_VV36SoBwotBEG4QInM4IHXjMYQMlG2iBRiRRvFFs0AxiXSSETqphCvYamaVXYDGFqLONbC2EgrtOiBCkUR2z7CLl0oGyY9CLo1y3Xb05yoNS5zj22EzP947z3Yu73lqmno8a_BW50i5O237fIoxZAZ7WAgevCuW_i7y38V9ua_Ru_A0_GHYX70eXS4CSsRFV34TTRbsFTPv9u38ERf1xM33_Ya_wtz-_3f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=Constant-Factor+Approximation+Algorithms+for+a+Series+of+Combinatorial+Routing+Problems+Based+on+the+Reduction+to+the+Asymmetric+Traveling+Salesman+Problem&rft.au=Yu%2C+Khachay+M&rft.au=Neznakhina%2C+E+D&rft.au=Ryzhenko%2C+K+V&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=319&rft.spage=S140&rft.epage=S155&rft_id=info:doi/10.1134%2FS0081543822060128&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon