Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittab...
Uložené v:
| Vydané v: | Proceedings of the Steklov Institute of Mathematics Ročník 319; číslo Suppl 1; s. S140 - S155 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.12.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0081-5438, 1531-8605 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the
22
𝜀
-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019. |
|---|---|
| AbstractList | For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the
22
𝜀
-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019. For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the 22ðoe-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019. |
| Author | Khachay, M. Yu Neznakhina, E. D. Ryzhenko, K. V. |
| Author_xml | – sequence: 1 givenname: M. Yu surname: Khachay fullname: Khachay, M. Yu email: mkhachay@imm.uran.ru organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences – sequence: 2 givenname: E. D. surname: Neznakhina fullname: Neznakhina, E. D. email: kseniarizhenko@gmail.com organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal University – sequence: 3 givenname: K. V. surname: Ryzhenko fullname: Ryzhenko, K. V. email: eneznakhina@yandex.ru organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences |
| BookMark | eNp9kd9KwzAUxoNMcJs-gHcBr6tJk_67nMOpMFDcvC5pe7pltMlMUnHP4suaboqgaG4C-c7vOyffGaGB0goQOqfkklLGrxaEpDTiLA1DEhMapkdoSCNGgzQm0QANezno9RM0snZDCI8Sng3R-1Qr64RywUyUThs82W6NfpOtcFIrPGlW2ki3bi2uvSjwAowEi3WNp7otpBKekaLBT7pzUq3wo9FFA778WliosLdwa8BPUHXl3tDp_cPE7toWnJElXhrxCk3PLkQDthXqy-QUHdeisXD2eY_R8-xmOb0L5g-399PJPCgZjV0Q0ygqsiKrkriEgvCUE8pIwdLKH69VZRTHcQEiLDKaQBgBoxnNCK94RpJKsDG6OPj6n790YF2-0Z1RvmUeJknCmc-U-Sp6qCqNttZAnW-Nj8nsckryfgf5rx14JvnBlNLtk3VGyOZfMjyQ1ndRKzDfM_0NfQA5G51l |
| CitedBy_id | crossref_primary_10_1134_S1064562423701454 crossref_primary_10_1007_s10479_025_06641_5 crossref_primary_10_1134_S008154382306010X |
| Cites_doi | 10.1007/s00453-014-9906-4 10.1007/s10898-020-00990-0 10.1007/BF01581256 10.1016/0304-3975(77)90012-3 10.1007/s10479-017-2409-3 10.1287/MNSC.6.1.80 10.1007/s12532-016-0108-8 10.1016/j.cor.2020.105004 10.21538/0134-4889-2019-25-4-235-248 10.1007/s10288-020-00433-2 10.1016/j.dam.2011.12.021 10.1145/2213977.2214038 10.1145/3188745.3188824 10.1145/3357713.3384233 10.1145/321958.321975 10.1287/opre.2.4.393 10.1134/S0081543816090054 10.1134/S0005117919110092 10.1287/moor.2019.1002 10.1016/j.cor.2017.05.010 10.1145/258533.258602 10.1016/S0895-7177(96)00187-2 10.15514/ISPRAS-2019-31(4)-8 10.1111/itor.12604 10.1007/978-3-030-17953-3_27 10.1007/s10472-019-09626-w 10.1287/opre.2017.1603 10.1007/978-3-319-26626-8_9 10.1007/978-3-030-91059-4_10 10.1016/j.cor.2018.07.021 10.1002/net.21742 10.1112/jlms/s1-10.37.26 10.4230/LIPIcs.STACS.2013.341 10.1142/S0129054110007623 10.1002/net.3230190602 10.1007/978-3-319-93800-4_6 10.1080/00207543.2017.1421784 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Pleiades Publishing, Ltd. 2022 Pleiades Publishing, Ltd. 2022. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2022 – notice: Pleiades Publishing, Ltd. 2022. |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S0081543822060128 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1531-8605 |
| EndPage | S155 |
| ExternalDocumentID | 10_1134_S0081543822060128 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR YNT ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c316t-6155b9b9d76ceb04840130b38dddd155dc5666bea2b917e25e3191904d4907da3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000944216100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0081-5438 |
| IngestDate | Thu Sep 25 00:55:32 EDT 2025 Tue Nov 18 21:11:11 EST 2025 Sat Nov 29 04:53:30 EST 2025 Fri Feb 21 02:44:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 1 |
| Keywords | prize collecting traveling salesman problem polynomial-time reduction asymmetric traveling salesman problem generalized traveling salesman problem vehicle routing problem constant-factor approximation algorithm Steiner cycle problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-6155b9b9d76ceb04840130b38dddd155dc5666bea2b917e25e3191904d4907da3 |
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| PQID | 2777432203 |
| PQPubID | 2044165 |
| ParticipantIDs | proquest_journals_2777432203 crossref_primary_10_1134_S0081543822060128 crossref_citationtrail_10_1134_S0081543822060128 springer_journals_10_1134_S0081543822060128 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: Heidelberg |
| PublicationTitle | Proceedings of the Steklov Institute of Mathematics |
| PublicationTitleAbbrev | Proc. Steklov Inst. Math |
| PublicationYear | 2022 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | HallPOn representatives of subsetsJ. London Math. Soc.19351012630158169410.1112/jlms/s1-10.37.260010.34503 MorASperanzaMGVehicle routing problems over time: A survey4OR-Q J. Oper. Res.2020182129149409996910.1007/s10288-020-00433-2 SteinováMApproximability of the minimum Steiner Cycle ProblemComput. Inform.20102961349135727993811399.68077 VerbeeckCVansteenwegenPAghezzafE-HThe time-dependent orienteering problem with time windows: A fast ant colony systemAnn. Oper. Res.2017254481505366575510.1007/s10479-017-2409-31369.90016 DantzigGBFulkersonDRJohnsonSMSolution of a large-scale traveling-salesman problemJ. Oper. Res. Soc. America1954243934107093210.1287/opre.2.4.3931414.90372 PaulAFreundDFerberAShmoysDWilliamsonDBudgeted prize-collecting traveling salesman and minimum spanning tree problemsMath. Oper. Res.2019452576590410027510.1287/moor.2019.10021456.90137 PecinDPessoaAPoggiMUchoaEImproved branch-cut-and-price for capacitated vehicle routingMath. Program. Comput.20179161100361301410.1007/s12532-016-0108-81368.90111 FrifitaSMasmoudiMVNS methods for home care routing and scheduling problem with temporal dependencies, and multiple structures and specialtiesInternat. Trans. Oper. Res.2020271291313399306110.1111/itor.12604 TraubVVygenJAn improved approximation algorithm for ATSPProceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 202020200113414173810.1145/3357713.33842331489.68404 BalasEThe prize collecting traveling salesman problemNetworks1989196621636101374910.1002/net.32301906020676.90089 BhattacharyaBĆustićARafieyARafieyASokolVApproximation algorithms for generalized MST and TSP in grid clustersCombinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 20152015ChamSpringer10.1007/978-3-319-26626-8_91478.90101 ChungSHSahBLeeJOptimization for drone and drone-truck combined operations: A review of the state of the art and future directionsComput. Oper. Res.2020123411678010.1016/j.cor.2020.1050041458.90072 AsanoTKatohNTamakiHTokuyamaTCovering points in the plane by $$K$$-tours: Towards a polynomial time approximation scheme for general $$K$$Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 19971997New YorkACM10.1145/258533.258602 KhachaiMYuOgorodnikovjYuYuHaimovich–Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces with a fixed doubling dimensionTrudy Inst. Mat. i Mekh. UrO RAN201925423524810.21538/0134-4889-2019-25-4-235-248 BartalYGottliebLAKrauthgamerRThe traveling salesman problem: Low-dimensionality implies a polynomial time approximation schemeSIAM J. Comput.20164515631581354202310.1145/2213977.22140381350.68288 NazariMOroojlooyATakacMSnyderLVReinforcement learning for solving the vehicle routing problemProceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 20182018098619871 PessoaASadykovRUchoaEVanderbeckFA generic exact solver for vehicle routing and related problemsMath. Program.2020183483523413782910.1007/978-3-030-17953-3_271450.90017 WahlströmMAbusing the Tutte Matrix: An algebraic instance compression for the $$K$$-set-cycle problemProceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 201320130341352308999410.4230/LIPIcs.STACS.2013.3411354.68135 QiuMFuZEgleseRTangQA Tabu search algorithm for the Vehicle Routing Problem with discrete split deliveries and pickupsComput. Oper. Res.2018100102116385486710.1016/j.cor.2018.07.0211458.90130 ZhukovaGNUlyanovMVFomichevMIA hybrid exact algorithm for the asymmetric Traveling Salesman Problem: Construction and a statistical study of computational efficiencyAutomat. Remote Control201980112054206710.1134/S0005117919110092 GutinGPunnenAPThe Traveling Salesman Problem and Its Variations2007New YorkSpringer1113.90134 ChristofidesNWorst-Case Analysis of a New Heuristic for the Traveling Salesman Problem1976PittsburghCarnegie Mellon Univ. AvdoshinSBeresnevaELocal search metaheuristics for capacitated vehicle routing problem: A comparative studyTrudy Inst. Sist. Program. RAN201931412113810.15514/ISPRAS-2019-31(4)-8 SerdyukovAIOn some extremal routes in graphsUpravl. Sist.19781776790475.90080 SahniSGonzalesT$$P$$-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152 SvenssonOTarnawskiJVéghLA constant-factor approximation algorithm for the asymmetric Traveling Salesman ProblemProceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 201820180204213382624710.1145/3188745.31888241428.90146 BevernRvanKomusiewiczCSorgeMA parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experimentsNetworks2017703262278370252810.1002/net.21742 KhachayMNeznakhinaKComplexity and approximability of the Euclidean generalized traveling salesman problem in grid clustersAnn. Math. Artif. Intell.20208815369405813910.1007/s10472-019-09626-w1430.90491 AsadpourAGoemansMMadryAGharanSOSaberiAAn $$O(\log n/\log\log n)$$-approximation algorithm for the Asymmetric Traveling Salesman ProblemOper. Res.201765410431061368180810.1287/opre.2017.16031380.90229 ChentsovAGKhachayMYuKhachayDMAn exact algorithm with linear complexity for a problem of visiting megalopolisesProc. Steklov Inst. Math.201629513846346811310.1134/S0081543816090054 AdamaszekACzumajALingasAPTAS for $$k$$-Tour Cover Problem on the plane for moderately large values of $$k$$Internat. J. Foundations Comp. Sci.2010216893904274000110.1142/S01290541100076231207.90013 ChentsovAGChentsovPAPetuninAASesekinANModel of megalopolises in the tool path optimisation for CNC plate cutting machinesInternat. J. Product. Res.201856144819483010.1080/00207543.2017.1421784 KhachayMNeznakhinaKTowards tractability of the Euclidean Generalized Traveling Salesman Problem in grid clusters defined by a grid of bounded heightOptimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 20182018ChamSpringer10.1007/978-3-319-93800-4_6 BienstockDGoemansMXSimchi-LeviDWilliamsonDA note on the prize collecting traveling salesman problemMath. Program.1993591413420122682610.1007/BF015812560793.90089 TothPVigoDThe Vehicle Routing Problem2014PhiladelphiaSIAM ArchettiCBianchessiNSperanzaMOptimal solutions for routing problems with profitsDiscrete Appl. Math.2013161547557301530010.1016/j.dam.2011.12.0211260.90156 KhachayMUkolovSPetuninAProblem-specific branch-and-bound algorithms for the precedence constrained generalized Traveling Salesman ProblemOptimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 20212021039239810.1007/978-3-030-91059-4_10 SmithSImesonFGLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman ProblemComput. Oper. Res.201787119367194810.1016/j.cor.2017.05.0101391.90535 DantzigGBRamserJHThe truck dispatching problemManag. Sci.195961809111581710.1287/MNSC.6.1.800995.90560 PapadimitriouCEuclidean TSP is $$NP$$-completeTheoret. Comput. Sci.19774323724445555010.1016/0304-3975(77)90012-30386.90057 ChentsovAGKorotaevaLNThe dynamic programming method in the generalized traveling salesman problemMath. Comp. Model.199725193105143464710.1016/S0895-7177(96)00187-20881.90118 DasAMathieuCA quasipolynomial time approximation scheme for Euclidean Capacitated Vehicle RoutingAlgorithmica2015731115142336178210.1007/s00453-014-9906-41319.90055 KhachayMOgorodnikovYuKhachayDEfficient approximation of the metric CVRP in spaces of fixed doubling dimensionJ. Glob. Optim.2021803679710428274310.1007/s10898-020-00990-01475.90082 M Qiu (8275_CR14) 2018; 100 M Khachay (8275_CR25) 2021; 80 A Pessoa (8275_CR12) 2020; 183 M Khachay (8275_CR43) 2020; 88 GB Dantzig (8275_CR7) 1959; 6 A Das (8275_CR34) 2015; 73 MYu Khachai (8275_CR36) 2019; 25 O Svensson (8275_CR29) 2018; 0 B Bhattacharya (8275_CR42) 2015 T Asano (8275_CR23) 1997 A Mor (8275_CR3) 2020; 18 C Verbeeck (8275_CR18) 2017; 254 S Sahni (8275_CR22) 1976; 23 D Pecin (8275_CR11) 2017; 9 GB Dantzig (8275_CR6) 1954; 2 AG Chentsov (8275_CR8) 1997; 25 S Frifita (8275_CR15) 2020; 27 C Papadimitriou (8275_CR20) 1977; 4 A Asadpour (8275_CR28) 2017; 65 P Hall (8275_CR37) 1935; 10 S Smith (8275_CR16) 2017; 87 S Avdoshin (8275_CR13) 2019; 31 M Khachay (8275_CR21) 2018 AG Chentsov (8275_CR9) 2016; 295 A Paul (8275_CR39) 2019; 45 SH Chung (8275_CR5) 2020; 123 (8275_CR2) 2014 D Bienstock (8275_CR40) 1993; 59 GN Zhukova (8275_CR19) 2019; 80 Rvan Bevern (8275_CR31) 2017; 70 (8275_CR1) 2007 V Traub (8275_CR30) 2020; 0 AI Serdyukov (8275_CR27) 1978; 17 AG Chentsov (8275_CR4) 2018; 56 Y Bartal (8275_CR24) 2016; 45 A Adamaszek (8275_CR35) 2010; 21 E Balas (8275_CR38) 1989; 19 M Steinová (8275_CR33) 2010; 29 C Archetti (8275_CR10) 2013; 161 M Khachay (8275_CR41) 2021; 0 M Nazari (8275_CR17) 2018; 0 N Christofides (8275_CR26) 1976 M Wahlström (8275_CR32) 2013; 0 |
| References_xml | – reference: TraubVVygenJAn improved approximation algorithm for ATSPProceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 202020200113414173810.1145/3357713.33842331489.68404 – reference: DantzigGBRamserJHThe truck dispatching problemManag. Sci.195961809111581710.1287/MNSC.6.1.800995.90560 – reference: TothPVigoDThe Vehicle Routing Problem2014PhiladelphiaSIAM – reference: KhachayMNeznakhinaKComplexity and approximability of the Euclidean generalized traveling salesman problem in grid clustersAnn. Math. Artif. Intell.20208815369405813910.1007/s10472-019-09626-w1430.90491 – reference: SerdyukovAIOn some extremal routes in graphsUpravl. Sist.19781776790475.90080 – reference: VerbeeckCVansteenwegenPAghezzafE-HThe time-dependent orienteering problem with time windows: A fast ant colony systemAnn. Oper. Res.2017254481505366575510.1007/s10479-017-2409-31369.90016 – reference: ChungSHSahBLeeJOptimization for drone and drone-truck combined operations: A review of the state of the art and future directionsComput. Oper. Res.2020123411678010.1016/j.cor.2020.1050041458.90072 – reference: BartalYGottliebLAKrauthgamerRThe traveling salesman problem: Low-dimensionality implies a polynomial time approximation schemeSIAM J. Comput.20164515631581354202310.1145/2213977.22140381350.68288 – reference: PecinDPessoaAPoggiMUchoaEImproved branch-cut-and-price for capacitated vehicle routingMath. Program. Comput.20179161100361301410.1007/s12532-016-0108-81368.90111 – reference: ChentsovAGChentsovPAPetuninAASesekinANModel of megalopolises in the tool path optimisation for CNC plate cutting machinesInternat. J. Product. Res.201856144819483010.1080/00207543.2017.1421784 – reference: KhachayMNeznakhinaKTowards tractability of the Euclidean Generalized Traveling Salesman Problem in grid clusters defined by a grid of bounded heightOptimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 20182018ChamSpringer10.1007/978-3-319-93800-4_6 – reference: SahniSGonzalesT$$P$$-complete approximation problemsJ. ACM197623355556540831310.1145/321958.3219750348.90152 – reference: HallPOn representatives of subsetsJ. London Math. Soc.19351012630158169410.1112/jlms/s1-10.37.260010.34503 – reference: SmithSImesonFGLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman ProblemComput. Oper. Res.201787119367194810.1016/j.cor.2017.05.0101391.90535 – reference: ChentsovAGKorotaevaLNThe dynamic programming method in the generalized traveling salesman problemMath. Comp. Model.199725193105143464710.1016/S0895-7177(96)00187-20881.90118 – reference: PapadimitriouCEuclidean TSP is $$NP$$-completeTheoret. Comput. Sci.19774323724445555010.1016/0304-3975(77)90012-30386.90057 – reference: SvenssonOTarnawskiJVéghLA constant-factor approximation algorithm for the asymmetric Traveling Salesman ProblemProceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 201820180204213382624710.1145/3188745.31888241428.90146 – reference: ChentsovAGKhachayMYuKhachayDMAn exact algorithm with linear complexity for a problem of visiting megalopolisesProc. Steklov Inst. Math.201629513846346811310.1134/S0081543816090054 – reference: BienstockDGoemansMXSimchi-LeviDWilliamsonDA note on the prize collecting traveling salesman problemMath. Program.1993591413420122682610.1007/BF015812560793.90089 – reference: WahlströmMAbusing the Tutte Matrix: An algebraic instance compression for the $$K$$-set-cycle problemProceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 201320130341352308999410.4230/LIPIcs.STACS.2013.3411354.68135 – reference: DasAMathieuCA quasipolynomial time approximation scheme for Euclidean Capacitated Vehicle RoutingAlgorithmica2015731115142336178210.1007/s00453-014-9906-41319.90055 – reference: AsanoTKatohNTamakiHTokuyamaTCovering points in the plane by $$K$$-tours: Towards a polynomial time approximation scheme for general $$K$$Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 19971997New YorkACM10.1145/258533.258602 – reference: DantzigGBFulkersonDRJohnsonSMSolution of a large-scale traveling-salesman problemJ. Oper. Res. Soc. America1954243934107093210.1287/opre.2.4.3931414.90372 – reference: ArchettiCBianchessiNSperanzaMOptimal solutions for routing problems with profitsDiscrete Appl. Math.2013161547557301530010.1016/j.dam.2011.12.0211260.90156 – reference: AvdoshinSBeresnevaELocal search metaheuristics for capacitated vehicle routing problem: A comparative studyTrudy Inst. Sist. Program. RAN201931412113810.15514/ISPRAS-2019-31(4)-8 – reference: AsadpourAGoemansMMadryAGharanSOSaberiAAn $$O(\log n/\log\log n)$$-approximation algorithm for the Asymmetric Traveling Salesman ProblemOper. Res.201765410431061368180810.1287/opre.2017.16031380.90229 – reference: AdamaszekACzumajALingasAPTAS for $$k$$-Tour Cover Problem on the plane for moderately large values of $$k$$Internat. J. Foundations Comp. Sci.2010216893904274000110.1142/S01290541100076231207.90013 – reference: ZhukovaGNUlyanovMVFomichevMIA hybrid exact algorithm for the asymmetric Traveling Salesman Problem: Construction and a statistical study of computational efficiencyAutomat. Remote Control201980112054206710.1134/S0005117919110092 – reference: BalasEThe prize collecting traveling salesman problemNetworks1989196621636101374910.1002/net.32301906020676.90089 – reference: KhachaiMYuOgorodnikovjYuYuHaimovich–Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces with a fixed doubling dimensionTrudy Inst. Mat. i Mekh. UrO RAN201925423524810.21538/0134-4889-2019-25-4-235-248 – reference: KhachayMUkolovSPetuninAProblem-specific branch-and-bound algorithms for the precedence constrained generalized Traveling Salesman ProblemOptimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 20212021039239810.1007/978-3-030-91059-4_10 – reference: PessoaASadykovRUchoaEVanderbeckFA generic exact solver for vehicle routing and related problemsMath. Program.2020183483523413782910.1007/978-3-030-17953-3_271450.90017 – reference: BhattacharyaBĆustićARafieyARafieyASokolVApproximation algorithms for generalized MST and TSP in grid clustersCombinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 20152015ChamSpringer10.1007/978-3-319-26626-8_91478.90101 – reference: ChristofidesNWorst-Case Analysis of a New Heuristic for the Traveling Salesman Problem1976PittsburghCarnegie Mellon Univ. – reference: SteinováMApproximability of the minimum Steiner Cycle ProblemComput. Inform.20102961349135727993811399.68077 – reference: GutinGPunnenAPThe Traveling Salesman Problem and Its Variations2007New YorkSpringer1113.90134 – reference: KhachayMOgorodnikovYuKhachayDEfficient approximation of the metric CVRP in spaces of fixed doubling dimensionJ. Glob. Optim.2021803679710428274310.1007/s10898-020-00990-01475.90082 – reference: BevernRvanKomusiewiczCSorgeMA parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experimentsNetworks2017703262278370252810.1002/net.21742 – reference: QiuMFuZEgleseRTangQA Tabu search algorithm for the Vehicle Routing Problem with discrete split deliveries and pickupsComput. Oper. Res.2018100102116385486710.1016/j.cor.2018.07.0211458.90130 – reference: NazariMOroojlooyATakacMSnyderLVReinforcement learning for solving the vehicle routing problemProceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 20182018098619871 – reference: FrifitaSMasmoudiMVNS methods for home care routing and scheduling problem with temporal dependencies, and multiple structures and specialtiesInternat. Trans. Oper. Res.2020271291313399306110.1111/itor.12604 – reference: PaulAFreundDFerberAShmoysDWilliamsonDBudgeted prize-collecting traveling salesman and minimum spanning tree problemsMath. Oper. Res.2019452576590410027510.1287/moor.2019.10021456.90137 – reference: MorASperanzaMGVehicle routing problems over time: A survey4OR-Q J. Oper. Res.2020182129149409996910.1007/s10288-020-00433-2 – volume: 0 start-page: 9861 year: 2018 ident: 8275_CR17 publication-title: Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, 2018 – volume: 73 start-page: 115 issue: 1 year: 2015 ident: 8275_CR34 publication-title: Algorithmica doi: 10.1007/s00453-014-9906-4 – volume: 80 start-page: 679 issue: 3 year: 2021 ident: 8275_CR25 publication-title: J. Glob. Optim. doi: 10.1007/s10898-020-00990-0 – volume-title: The Traveling Salesman Problem and Its Variations year: 2007 ident: 8275_CR1 – volume: 59 start-page: 413 issue: 1 year: 1993 ident: 8275_CR40 publication-title: Math. Program. doi: 10.1007/BF01581256 – volume: 4 start-page: 237 issue: 3 year: 1977 ident: 8275_CR20 publication-title: Theoret. Comput. Sci. doi: 10.1016/0304-3975(77)90012-3 – volume: 254 start-page: 481 year: 2017 ident: 8275_CR18 publication-title: Ann. Oper. Res. doi: 10.1007/s10479-017-2409-3 – volume: 6 start-page: 80 issue: 1 year: 1959 ident: 8275_CR7 publication-title: Manag. Sci. doi: 10.1287/MNSC.6.1.80 – volume: 9 start-page: 61 issue: 1 year: 2017 ident: 8275_CR11 publication-title: Math. Program. Comput. doi: 10.1007/s12532-016-0108-8 – volume: 123 year: 2020 ident: 8275_CR5 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.105004 – volume: 25 start-page: 235 issue: 4 year: 2019 ident: 8275_CR36 publication-title: Trudy Inst. Mat. i Mekh. UrO RAN doi: 10.21538/0134-4889-2019-25-4-235-248 – volume: 18 start-page: 129 issue: 2 year: 2020 ident: 8275_CR3 publication-title: 4OR-Q J. Oper. Res. doi: 10.1007/s10288-020-00433-2 – volume: 161 start-page: 547 year: 2013 ident: 8275_CR10 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2011.12.021 – volume: 45 start-page: 1563 year: 2016 ident: 8275_CR24 publication-title: SIAM J. Comput. doi: 10.1145/2213977.2214038 – volume: 0 start-page: 204 year: 2018 ident: 8275_CR29 publication-title: Proceedings of the 50th Annual ACM Symposium on Theory of Computing, Los Angeles, USA, 2018 doi: 10.1145/3188745.3188824 – volume: 0 start-page: 1 year: 2020 ident: 8275_CR30 publication-title: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing, New York, USA, 2020 doi: 10.1145/3357713.3384233 – volume: 23 start-page: 555 issue: 3 year: 1976 ident: 8275_CR22 publication-title: J. ACM doi: 10.1145/321958.321975 – volume: 2 start-page: 393 issue: 4 year: 1954 ident: 8275_CR6 publication-title: J. Oper. Res. Soc. America doi: 10.1287/opre.2.4.393 – volume: 295 start-page: 38 issue: 1 year: 2016 ident: 8275_CR9 publication-title: Proc. Steklov Inst. Math. doi: 10.1134/S0081543816090054 – volume-title: Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem year: 1976 ident: 8275_CR26 – volume-title: The Vehicle Routing Problem year: 2014 ident: 8275_CR2 – volume: 80 start-page: 2054 issue: 11 year: 2019 ident: 8275_CR19 publication-title: Automat. Remote Control doi: 10.1134/S0005117919110092 – volume: 45 start-page: 576 issue: 2 year: 2019 ident: 8275_CR39 publication-title: Math. Oper. Res. doi: 10.1287/moor.2019.1002 – volume: 87 start-page: 1 year: 2017 ident: 8275_CR16 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2017.05.010 – volume: 29 start-page: 1349 issue: 6 year: 2010 ident: 8275_CR33 publication-title: Comput. Inform. – volume-title: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, USA, 1997 year: 1997 ident: 8275_CR23 doi: 10.1145/258533.258602 – volume: 25 start-page: 93 issue: 1 year: 1997 ident: 8275_CR8 publication-title: Math. Comp. Model. doi: 10.1016/S0895-7177(96)00187-2 – volume: 31 start-page: 121 issue: 4 year: 2019 ident: 8275_CR13 publication-title: Trudy Inst. Sist. Program. RAN doi: 10.15514/ISPRAS-2019-31(4)-8 – volume: 27 start-page: 291 issue: 1 year: 2020 ident: 8275_CR15 publication-title: Internat. Trans. Oper. Res. doi: 10.1111/itor.12604 – volume: 183 start-page: 483 year: 2020 ident: 8275_CR12 publication-title: Math. Program. doi: 10.1007/978-3-030-17953-3_27 – volume: 88 start-page: 53 issue: 1 year: 2020 ident: 8275_CR43 publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-019-09626-w – volume: 65 start-page: 1043 issue: 4 year: 2017 ident: 8275_CR28 publication-title: Oper. Res. doi: 10.1287/opre.2017.1603 – volume-title: Combinatorial Optimization and Applications: Proceedings of the 9th International Conference, Houston, TX, USA, 2015 year: 2015 ident: 8275_CR42 doi: 10.1007/978-3-319-26626-8_9 – volume: 0 start-page: 392 year: 2021 ident: 8275_CR41 publication-title: Optimization and Applications: Proceedings of the 8th International Conference, Petrovac, Montenegro, 2021 doi: 10.1007/978-3-030-91059-4_10 – volume: 100 start-page: 102 year: 2018 ident: 8275_CR14 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.07.021 – volume: 70 start-page: 262 issue: 3 year: 2017 ident: 8275_CR31 publication-title: Networks doi: 10.1002/net.21742 – volume: 10 start-page: 26 issue: 1 year: 1935 ident: 8275_CR37 publication-title: J. London Math. Soc. doi: 10.1112/jlms/s1-10.37.26 – volume: 0 start-page: 341 year: 2013 ident: 8275_CR32 publication-title: Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Science, Kiel, Germany, 2013 doi: 10.4230/LIPIcs.STACS.2013.341 – volume: 21 start-page: 893 issue: 6 year: 2010 ident: 8275_CR35 publication-title: Internat. J. Foundations Comp. Sci. doi: 10.1142/S0129054110007623 – volume: 19 start-page: 621 issue: 6 year: 1989 ident: 8275_CR38 publication-title: Networks doi: 10.1002/net.3230190602 – volume-title: Optimization Problems and Their Applications: Proceedings of the 7th International Conference, Omsk, Russia, 2018 year: 2018 ident: 8275_CR21 doi: 10.1007/978-3-319-93800-4_6 – volume: 17 start-page: 76 year: 1978 ident: 8275_CR27 publication-title: Upravl. Sist. – volume: 56 start-page: 4819 issue: 14 year: 2018 ident: 8275_CR4 publication-title: Internat. J. Product. Res. doi: 10.1080/00207543.2017.1421784 |
| SSID | ssj0045749 |
| Score | 2.2751646 |
| Snippet | For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | S140 |
| SubjectTerms | Algorithms Approximation Asymmetry Combinatorial analysis Mathematical analysis Mathematics Mathematics and Statistics Optimization Polynomials Route planning Traveling salesman problem Vehicle routing |
| Title | Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem |
| URI | https://link.springer.com/article/10.1134/S0081543822060128 https://www.proquest.com/docview/2777432203 |
| Volume | 319 |
| WOSCitedRecordID | wos000944216100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1531-8605 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045749 issn: 0081-5438 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMTyFISO6-xVFQMgKq2VN2i2HGhUpOiOiD4LfxZzk7SiqcEGWPnYuXsu-9yL4ROR56QTHqM8NhihPkjTjh1KAmSeGRzTwa-CZAdXPu3t8FwGHbKPG5VRbtXLkkjqYu-I8zk9IK-p6DRdA0RJ1hGK6DtAn0au71BJX6Z65eYN7CJnl66Mr8l8VEZLRDmJ6eo0TXtzX-tcgttlNASN4u9sI2WZLaD1m_mdVnVLnprFXAwJ23TZwc3dUnxl3GRv4ibk_vpbJw_pAoDlsUx1v_OpMLTEQa5ATa0ttBhw2IdRwSrwp2iHY3CF6AMEwwk4GW4q8vBGoL51Nxoqtc01a27BO7rdkc6BR73QDWpNM4qInvorn3Zb12Rsj0DEdT2cqI9mjzkYeIDvzlIAm2qWZwGCVwwlgiAih6XscPBJpSOK-G4A_5gCQOLPInpPqpl00weIAxSwXUFTaQjOEhui9s0dmUI5pWIubS9OrIqPkWirF2uW2hMImPDUBZ9-e51dDZ_5LEo3PHb5EbF_Kg8wypyfIDGIO8sWkfnFbMXwz8SO_zT7CO05uiMChMh00C1fPYkj9GqeM7HanZitvY7adTyFw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7Iiy-sAJZCmJnaXHUlGBKBWCgrhFseNCpS6oDgi-hZ9l7CQgVglyjJ2JlbFn3mQ2gL1uIBVXAacicTjlYVdQwTxGozTpuiJQUWgDZK9bYbsd3dzUzos8bl1Gu5cuSSup874j3Ob0or5nqNFMDREvmoQpjgrLxPFdXF6X4pf7YYF5I5ea6YUr81sSH5XRO8L85BS1uqa58K9VLsJ8AS1JPd8LSzChhsswd_ZWl1WvwEsjh4MZbdo-O6RuSoo_9fL8RVLv347GvexuoAliWZIQ8-9MaTLqEpQbaEMbCx03LDFxRLgqcp63o9HkEJVhSpAEvoxcmHKwlmA2sjfq-nkwMK27JOmYdkcmBZ5comrSg2RYElmFq-ZRp3FMi_YMVDI3yKjxaIqaqKUh8lugJDCmmiNYlOKFY6lEqBgIlXgCbULl-QqPO-IPnnK0yNOErUFlOBqqdSAoFXxfslR5UqDkdoTLEl_V0LySiVBuUAWn5FMsi9rlpoVGP7Y2DOPxl-9ehf23R-7zwh2_Td4qmR8XZ1jHXojQGOWdw6pwUDL7ffhHYht_mr0LM8eds1bcOmmfbsKsZ7IrbLTMFlSy8YPahmn5mPX0eMdu81fKaPT7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ_wYQw-KKCGE4R94Amzse1uP-7xQC8a4HIBJLw13Y_qJVyP3FaCf4v_rDPbFiKiiaGP7Xa66U5n5tfZmR_AbploK20iuSoCyWVaKq5EJHhmijJUic1Sv0H2_CgdjbKLi_645Tl13W73LiXZ1DRQl6aqfn9lypaDRPr6XvT9Ar0b9ROJskVYlsQZRHD99LwzxTJO2_g3CzkNb9OaD4r43THdRZv3EqTe7wxfPHrGq_C8DTnZoNGRNViw1To8O77t1-pews-DJkys-dDz77ABtRq_mTR1jWxw-XU2n9Tfpo5hjMsKRv_UrGOzkqE9QWxNyB0VmdH-IpwhGzc0NY7to5M0DEXgw9gJtYn1AuuZPzFwP6ZTovTS7IxokKg0np2iy3LTouqEvIIvw49nB594S9vAtQiTmlOmU_VV36SoBwotBEG4QInM4IHXjMYQMlG2iBRiRRvFFs0AxiXSSETqphCvYamaVXYDGFqLONbC2EgrtOiBCkUR2z7CLl0oGyY9CLo1y3Xb05yoNS5zj22EzP947z3Yu73lqmno8a_BW50i5O237fIoxZAZ7WAgevCuW_i7y38V9ua_Ru_A0_GHYX70eXS4CSsRFV34TTRbsFTPv9u38ERf1xM33_Ya_wtz-_3f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=Constant-Factor+Approximation+Algorithms+for+a+Series+of+Combinatorial+Routing+Problems+Based+on+the+Reduction+to+the+Asymmetric+Traveling+Salesman+Problem&rft.au=Yu%2C+Khachay+M&rft.au=Neznakhina%2C+E+D&rft.au=Ryzhenko%2C+K+V&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=319&rft.spage=S140&rft.epage=S155&rft_id=info:doi/10.1134%2FS0081543822060128&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon |