Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem
For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittab...
Uloženo v:
| Vydáno v: | Proceedings of the Steklov Institute of Mathematics Ročník 319; číslo Suppl 1; s. S140 - S155 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.12.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0081-5438, 1531-8605 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For the first time, algorithms with constant performance guarantees are substantiated for a series of asymmetric routing problems of combinatorial optimization: the Steiner cycle problem (SCP), the generalized traveling salesman problem (GTSP), the capacitated vehicle routing problem with unsplittable customer demands (CVRP-UCD), and the prize collecting traveling salesman problem (PCTSP). The presented results are united by the property that they all rely on polynomial cost-preserving reduction to appropriate instances of the asymmetric traveling salesman problem (ATSP) and on the
22
𝜀
-approximation algorithm for this classical problem proposed by O. Svensson and V. Traub in 2019. |
|---|---|
| Bibliografie: | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
| ISSN: | 0081-5438 1531-8605 |
| DOI: | 10.1134/S0081543822060128 |