An improved particle swarm optimization for the resource-constrained project scheduling problem

In this paper, an improved particle swarm optimization (PSO) algorithm is proposed for the resource-constrained project scheduling problem (RCPSP) which is widely applied in advanced manufacturing, production planning, and project management. The algorithm treats the solutions of RCPSP as particle s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology Jg. 67; H. 9-12; S. 2627 - 2638
Hauptverfasser: Jia, Qiong, Seo, Yoonho
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.08.2013
Springer Nature B.V
Schlagworte:
ISSN:0268-3768, 1433-3015
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, an improved particle swarm optimization (PSO) algorithm is proposed for the resource-constrained project scheduling problem (RCPSP) which is widely applied in advanced manufacturing, production planning, and project management. The algorithm treats the solutions of RCPSP as particle swarms and employs a double justification skill and a move operator for the particles, in association with rank-priority-based representation, greedy random search, and serial scheduling scheme, to execute the intelligent updating process of the swarms to search for better solutions. The integration combines and overhauls the characteristics of both PSO and RCPSP, resulting in enhanced performance. The computational experiments are subsequently conducted to set the adequate parameters and compare the proposed algorithm with other approaches. The results suggest that the proposed PSO algorithm augments the performance by 9.26, 16.17, and 10.45 % for the J 30, J 60, and J 120 instances against the best lower bound-based PSO currently available, respectively. Moreover, the proposed algorithms demonstrate obvious advantage over other proposals in exploring solutions for large-scale RCPSP problems such as the J 60 and J 120 instances.
AbstractList In this paper, an improved particle swarm optimization (PSO) algorithm is proposed for the resource-constrained project scheduling problem (RCPSP) which is widely applied in advanced manufacturing, production planning, and project management. The algorithm treats the solutions of RCPSP as particle swarms and employs a double justification skill and a move operator for the particles, in association with rank-priority-based representation, greedy random search, and serial scheduling scheme, to execute the intelligent updating process of the swarms to search for better solutions. The integration combines and overhauls the characteristics of both PSO and RCPSP, resulting in enhanced performance. The computational experiments are subsequently conducted to set the adequate parameters and compare the proposed algorithm with other approaches. The results suggest that the proposed PSO algorithm augments the performance by 9.26, 16.17, and 10.45 % for the J 30, J 60, and J 120 instances against the best lower bound-based PSO currently available, respectively. Moreover, the proposed algorithms demonstrate obvious advantage over other proposals in exploring solutions for large-scale RCPSP problems such as the J 60 and J 120 instances.
In this paper, an improved particle swarm optimization (PSO) algorithm is proposed for the resource-constrained project scheduling problem (RCPSP) which is widely applied in advanced manufacturing, production planning, and project management. The algorithm treats the solutions of RCPSP as particle swarms and employs a double justification skill and a move operator for the particles, in association with rank-priority-based representation, greedy random search, and serial scheduling scheme, to execute the intelligent updating process of the swarms to search for better solutions. The integration combines and overhauls the characteristics of both PSO and RCPSP, resulting in enhanced performance. The computational experiments are subsequently conducted to set the adequate parameters and compare the proposed algorithm with other approaches. The results suggest that the proposed PSO algorithm augments the performance by 9.26, 16.17, and 10.45 % for the J30, J60, and J120 instances against the best lower bound-based PSO currently available, respectively. Moreover, the proposed algorithms demonstrate obvious advantage over other proposals in exploring solutions for large-scale RCPSP problems such as the J60 and J120 instances.
Author Jia, Qiong
Seo, Yoonho
Author_xml – sequence: 1
  givenname: Qiong
  surname: Jia
  fullname: Jia, Qiong
  organization: Department of Information Management Engineering, Korea University
– sequence: 2
  givenname: Yoonho
  surname: Seo
  fullname: Seo, Yoonho
  email: yoonhoseo@korea.ac.kr
  organization: Department of Information Management Engineering, Korea University
BookMark eNp9kMtKAzEUhoNUsK0-gLsB19FcxmRmWYo3KLjRdcgkmTZlJqlJqtWnN-MIgqCrA4fvO5d_BibOOwPAOUaXGCF-FRHCHEGECSwZr-HhCExxSSmkCF9PwBQRVkHKWXUCZjFuM80wq6ZALFxh-13wr0YXOxmSVZ0p4psMfeF3yfb2QybrXdH6UKSNKYKJfh-Ugcq7mIK0bhCD3xqViqg2Ru8769ZDq-lMfwqOW9lFc_Zd5-D59uZpeQ9Xj3cPy8UKKopZggxpXfEaEcmlrpiqNdFVaUzJcdnIiqpG1owoyhqqlWm5pKWqMq1qrkhbazoHF-PcvPdlb2IS23ymyysFIYxQViOMMsVHSgUfYzCtUDZ9_Td80gmMxJCmGNMUOU0xpCkO2cS_zF2wvQzv_zpkdGJm3dqEn5v-lj4BJf2MYA
CitedBy_id crossref_primary_10_1007_s00366_015_0396_z
crossref_primary_10_1016_j_asoc_2017_06_042
crossref_primary_10_1016_j_asoc_2019_105805
crossref_primary_10_1016_j_cor_2020_105104
crossref_primary_10_1016_j_asoc_2019_02_011
crossref_primary_10_1016_j_vacuum_2018_09_050
crossref_primary_10_3390_app9050885
crossref_primary_10_1016_j_eswa_2020_114174
crossref_primary_10_1007_s10845_015_1074_0
crossref_primary_10_1109_ACCESS_2018_2879503
crossref_primary_10_1007_s00500_015_1606_8
crossref_primary_10_1007_s40092_019_00328_w
crossref_primary_10_1007_s10845_013_0850_y
crossref_primary_10_1016_j_procir_2019_04_078
crossref_primary_10_1007_s12046_021_01787_x
crossref_primary_10_1016_j_ejor_2019_01_063
crossref_primary_10_1016_j_ins_2017_08_023
crossref_primary_10_1016_j_cie_2021_107455
crossref_primary_10_1155_2017_1308704
crossref_primary_10_1007_s00170_013_5571_z
crossref_primary_10_1016_j_knosys_2021_107099
crossref_primary_10_1155_2019_9085320
crossref_primary_10_1016_j_autcon_2021_104069
crossref_primary_10_1080_00207543_2016_1203078
crossref_primary_10_1007_s00500_018_3410_8
crossref_primary_10_1016_j_eswa_2019_112915
crossref_primary_10_1007_s10489_021_02608_8
crossref_primary_10_1016_j_autcon_2019_103052
crossref_primary_10_1016_j_procs_2019_12_209
crossref_primary_10_1155_2018_6932985
crossref_primary_10_1155_2021_9059722
crossref_primary_10_7232_JKIIE_2022_48_1_063
Cites_doi 10.1007/978-1-4615-4629-0
10.1016/j.ejor.2006.12.033
10.1109/ICNN.1995.488968
10.1287/mnsc.16.1.93
10.1016/j.autcon.2007.11.004
10.1016/j.autcon.2004.08.006
10.1016/S0305-0548(97)00055-5
10.1287/mnsc.41.10.1693
10.1016/j.ejor.2005.01.065
10.1016/j.ejor.2004.04.008
10.1016/S0377-2217(02)00761-0
10.1016/S0377-2217(02)00136-4
10.1108/01443579310046454
10.1016/S0377-2217(98)00204-5
10.1016/0166-218X(83)90012-4
10.1016/j.ijproman.2005.06.006
10.1007/s00170-009-2483-z
10.1016/j.eswa.2009.07.024
10.1016/j.cor.2009.12.011
10.1007/978-1-4615-5533-9_7
10.1016/0377-2217(95)00357-6
10.1016/S0020-0190(02)00447-7
10.1080/07408179508936773
10.1007/s00170-006-0631-2
10.1057/palgrave.jors.2601563
10.1016/S0377-2217(99)00485-3
10.1007/978-1-4615-1507-4_25
10.1016/S0377-2217(97)00335-4
10.1023/B:ANOR.0000039524.09792.c9
10.1002/nav.10029
10.1007/s00291-003-0158-y
10.1002/(SICI)1520-6750(200004)47:3<201::AID-NAV2>3.0.CO;2-L
10.1287/mnsc.44.5.714
10.1016/j.amc.2007.04.096
ContentType Journal Article
Copyright Springer-Verlag London 2013
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2013). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag London 2013
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2013). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-012-4679-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 2638
ExternalDocumentID 10_1007_s00170_012_4679_x
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-60dd87902a7ad86c9d2d84ee4714ba83cba962c36b3dcef7a34c802ac97c2f9d3
IEDL.DBID RSV
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322326300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Tue Nov 04 23:18:38 EST 2025
Sat Nov 29 05:51:04 EST 2025
Tue Nov 18 22:23:01 EST 2025
Fri Feb 21 02:31:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-12
Keywords Resource-constrained project scheduling problem
Move operator
Rank-priority-based presentation
Particle swarm optimization
Double justification
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-60dd87902a7ad86c9d2d84ee4714ba83cba962c36b3dcef7a34c802ac97c2f9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262369010
PQPubID 2044010
PageCount 12
ParticipantIDs proquest_journals_2262369010
crossref_citationtrail_10_1007_s00170_012_4679_x
crossref_primary_10_1007_s00170_012_4679_x
springer_journals_10_1007_s00170_012_4679_x
PublicationCentury 2000
PublicationDate 20130800
2013-8-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 8
  year: 2013
  text: 20130800
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2013
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ÖzdamarLUlusoyGA survey on the resourceconstrained project scheduling problemIIE Trans19952757458610.1080/07408179508936773
LuMLamHCDaiFResource-constrained critical path analysis based on discrete event simulation and particle swarm optimizationAutom Constr200817667068110.1016/j.autcon.2007.11.004
HeilmannRA branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lagsEur J Oper Res2003144234836519362991012.9051310.1016/S0377-2217(02)00136-4
HerroelenWDemeulemeesterEDe ReyckBResource-constrained project scheduling—a survey of recent developmentsComput Oper Res199825427930216608791040.9052510.1016/S0305-0548(97)00055-5
HartmannSKolischRExperimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problemEur J Oper Res200012723944070985.9003610.1016/S0377-2217(99)00485-3
KoneOArtiguesCLopezPMongeauMEvent-based MILP models for resource-constrained project scheduling problemsComput Oper Res201138131326792101231.9020210.1016/j.cor.2009.12.011
BlazewiczJLenstraJKRinooy KanAHGScheduling subject to resource constraints: classification and complexityDiscrete Appl Math1983511246788150516.6803710.1016/0166-218X(83)90012-4
Kolisch R, Padman R (1997) An integrated survey of deterministic project scheduling. Technical Report 463, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel
ZhangHLiXDLiHHuangFLParticle swarm optimization-based schemes for resource-constrained project schedulingAutom Constr200514339340410.1016/j.autcon.2004.08.006
JarbouiBDamakNSiarryPRebaiAA combinatorial particle swarm optimization for solving multi-mode resource-constrained project schedulingAppl Math Comput20081051299308237921610.1016/j.amc.2007.04.096
ChenRMWuCLWangCMLoSTUsing novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIBExpert Syst Appl20103731899191010.1016/j.eswa.2009.07.024
BruckerPKnustSSchooAThieleOA branch and bound algorithm for the resource-constrained project scheduling problem1Eur J Oper Res199810722722880970.9003010.1016/S0377-2217(97)00335-4
MingozziAManiezzoVRicciardelliSBiancoLAn exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulationManag Sci19984457147291004.9003610.1287/mnsc.44.5.714
AlcarazJMarotoCRuizRSolving the multi-mode resource-constrained project scheduling problem with genetic algorithmsJ Oper Res Soc20035466146261095.9054110.1057/palgrave.jors.2601563
IcmeliOErengucSSZappeCJProject scheduling problems: a surveyInt J Oper Prod Manag19931311809110.1108/01443579310046454
ZamaniRAn efficient time-windowing procedure for scheduling projects under multiple resource constraintsOR Spectrum20042642344420640651109.9004810.1007/s00291-003-0158-y
TreleaICThe particle swarm optimization algorithm: convergence analysis and parameter selectionInf Process Lett200385631732519564541156.9046310.1016/S0020-0190(02)00447-7
PritskerAABWattersLJWolfePMMultiproject scheduling with limited resources: a zero-one programming approachManag Sci19691619310810.1287/mnsc.16.1.93
KleinRScheduling of resource-constrained projects2000BostonKluwer0949.9004210.1007/978-1-4615-4629-0
ZamaniRA parallel complete anytime procedure for project scheduling under multiple resource constraintsInt J Adv Manuf Technol20105035336210.1007/s00170-009-2483-z
VallsVBallestinFQuintanillaMSJustification and RCPSP: a technique that paysEur J Oper Res20051653753861066.9004510.1016/j.ejor.2004.04.008
Demeulemeester E, Herroelen W (1995) New benchmark results for the resource-constrained project scheduling problem. In: Proceedings of the INFORMS Singapore international meeting, Singapore
KolischRSprecherADrexlACharacterization and generation of a general class of resource-constrained project scheduling problemsManag Sci199541169317030870.9007010.1287/mnsc.41.10.1693
HerroelenWDemeulemeesterEDe ReyckBAn integrated classification scheme for resource scheduling. Research Report 9905,1999K.U. LeuvenDepartment of Applied Economics
NonobeKIbarakiTEssays and surveys in metaheuristics2002Dordrecht, The NetherlandsKluwer Academic Publisherspp 557588
KennedyJEberhartRCShiYHSwarm intelligence: collective, adaptive2001San FranciscoMorgan Kaufmann
KennedyJEberhartRCProceedings of IEEE international conference on neural networks1995AustraliaPerth1942194810.1109/ICNN.1995.488968
ChenFWandLAn effective shuffled frog-leaping algorithm for resource-constrained project scheduling problemComput Oper Res2011395890901
ZhangHLiHTamCMParticle swarm optimization for resource-constrained project schedulingInt J Proj Manag200624839210.1016/j.ijproman.2005.06.006
VallsVBallestinFQuintanillaSA hybrid genetic algorithm for the resource-constrained project scheduling problemEur J Oper Res2008185249550819931331137.9052610.1016/j.ejor.2006.12.033
HartmannSA self-adapting genetic algorithm for project scheduling under resource constraintsNav Res Logist2002494334481013.9006210.1002/nav.10029
KolischRSerial and parallel resource-constrained project scheduling methods revisited: theory and computationEur J Oper Res19969023203330916.9015110.1016/0377-2217(95)00357-6
BouleimenKLecocqHA new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode versionEur J Oper Res2003149226828119931321040.9001510.1016/S0377-2217(02)00761-0
BruckerPDrexlAMöhringRNeumannKPeschEResource-constrained project scheduling: notation, classification, models, and methodsEur J Oper Res199911213410937.9003010.1016/S0377-2217(98)00204-5
VallsVBallestinFQuintanillaSA population-based approach to the resource-constrained project scheduling problemAnn Oper Res200413130532420958091066.9004410.1023/B:ANOR.0000039524.09792.c9
SchirmerACase-based reasoning and improved adaptive search for project schedulingNav Res Logist20004720122217457160956.9001110.1002/(SICI)1520-6750(200004)47:3<201::AID-NAV2>3.0.CO;2-L
KolischRHartmannSExperimental investigation of heuristics for resource-constrained project scheduling: an updateEur J Oper Res2006174123371116.9004710.1016/j.ejor.2005.01.065
AgarwalRTiwariMKMukherjeeSKArtificial immune system based approach for solving resource constraint project scheduling problemInt J Adv Manuf Technol20073458459310.1007/s00170-006-0631-2
DemeulemeesterELHerroelenWSProject scheduling: a research handbook2002BostonKluwer Academic1059.90068
KolischRHartmannSProject scheduling—recent models, algorithms and applications1999BostonKluwer Academic147178
Kaplan L (1996) Resource-constrained project scheduling with preemption of jobs. Dissertation, University of Michigan
RM Chen (4679_CR29) 2010; 37
R Kolisch (4679_CR19) 1999
R Zamani (4679_CR28) 2004; 26
M Lu (4679_CR34) 2008; 17
W Herroelen (4679_CR16) 1998; 25
IC Trelea (4679_CR37) 2003; 85
J Alcaraz (4679_CR7) 2003; 54
R Heilmann (4679_CR12) 2003; 144
O Kone (4679_CR9) 2011; 38
K Bouleimen (4679_CR27) 2003; 149
J Blazewicz (4679_CR13) 1983; 5
L Özdamar (4679_CR15) 1995; 27
V Valls (4679_CR25) 2008; 185
B Jarboui (4679_CR33) 2008; 105
R Zamani (4679_CR3) 2010; 50
V Valls (4679_CR24) 2004; 131
S Hartmann (4679_CR22) 2002; 49
R Agarwal (4679_CR2) 2007; 34
P Brucker (4679_CR10) 1998; 107
R Kolisch (4679_CR20) 2006; 174
V Valls (4679_CR39) 2005; 165
H Zhang (4679_CR31) 2005; 14
F Chen (4679_CR41) 2011; 39
J Alcaraz (4679_CR23) 2003; 54
4679_CR17
O Icmeli (4679_CR14) 1993; 13
J Kennedy (4679_CR30) 1995
AAB Pritsker (4679_CR4) 1969; 16
P Brucker (4679_CR18) 1999; 112
A Mingozzi (4679_CR8) 1998; 44
4679_CR11
R Kolisch (4679_CR38) 1996; 90
S Hartmann (4679_CR21) 2000; 127
K Nonobe (4679_CR26) 2002
H Zhang (4679_CR32) 2006; 24
J Kennedy (4679_CR36) 2001
R Klein (4679_CR6) 2000
R Kolisch (4679_CR40) 1995; 41
A Schirmer (4679_CR42) 2000; 47
W Herroelen (4679_CR1) 1999
EL Demeulemeester (4679_CR35) 2002
4679_CR5
References_xml – reference: MingozziAManiezzoVRicciardelliSBiancoLAn exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulationManag Sci19984457147291004.9003610.1287/mnsc.44.5.714
– reference: HerroelenWDemeulemeesterEDe ReyckBResource-constrained project scheduling—a survey of recent developmentsComput Oper Res199825427930216608791040.9052510.1016/S0305-0548(97)00055-5
– reference: KolischRHartmannSExperimental investigation of heuristics for resource-constrained project scheduling: an updateEur J Oper Res2006174123371116.9004710.1016/j.ejor.2005.01.065
– reference: IcmeliOErengucSSZappeCJProject scheduling problems: a surveyInt J Oper Prod Manag19931311809110.1108/01443579310046454
– reference: SchirmerACase-based reasoning and improved adaptive search for project schedulingNav Res Logist20004720122217457160956.9001110.1002/(SICI)1520-6750(200004)47:3<201::AID-NAV2>3.0.CO;2-L
– reference: Kolisch R, Padman R (1997) An integrated survey of deterministic project scheduling. Technical Report 463, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel
– reference: DemeulemeesterELHerroelenWSProject scheduling: a research handbook2002BostonKluwer Academic1059.90068
– reference: KoneOArtiguesCLopezPMongeauMEvent-based MILP models for resource-constrained project scheduling problemsComput Oper Res201138131326792101231.9020210.1016/j.cor.2009.12.011
– reference: VallsVBallestinFQuintanillaSA hybrid genetic algorithm for the resource-constrained project scheduling problemEur J Oper Res2008185249550819931331137.9052610.1016/j.ejor.2006.12.033
– reference: KleinRScheduling of resource-constrained projects2000BostonKluwer0949.9004210.1007/978-1-4615-4629-0
– reference: KolischRSerial and parallel resource-constrained project scheduling methods revisited: theory and computationEur J Oper Res19969023203330916.9015110.1016/0377-2217(95)00357-6
– reference: BouleimenKLecocqHA new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode versionEur J Oper Res2003149226828119931321040.9001510.1016/S0377-2217(02)00761-0
– reference: ZhangHLiHTamCMParticle swarm optimization for resource-constrained project schedulingInt J Proj Manag200624839210.1016/j.ijproman.2005.06.006
– reference: NonobeKIbarakiTEssays and surveys in metaheuristics2002Dordrecht, The NetherlandsKluwer Academic Publisherspp 557588
– reference: HerroelenWDemeulemeesterEDe ReyckBAn integrated classification scheme for resource scheduling. Research Report 9905,1999K.U. LeuvenDepartment of Applied Economics
– reference: KennedyJEberhartRCShiYHSwarm intelligence: collective, adaptive2001San FranciscoMorgan Kaufmann
– reference: AlcarazJMarotoCRuizRSolving the multi-mode resource-constrained project scheduling problem with genetic algorithmsJ Oper Res Soc20035466146261095.9054110.1057/palgrave.jors.2601563
– reference: AgarwalRTiwariMKMukherjeeSKArtificial immune system based approach for solving resource constraint project scheduling problemInt J Adv Manuf Technol20073458459310.1007/s00170-006-0631-2
– reference: Kaplan L (1996) Resource-constrained project scheduling with preemption of jobs. Dissertation, University of Michigan
– reference: BruckerPKnustSSchooAThieleOA branch and bound algorithm for the resource-constrained project scheduling problem1Eur J Oper Res199810722722880970.9003010.1016/S0377-2217(97)00335-4
– reference: KolischRSprecherADrexlACharacterization and generation of a general class of resource-constrained project scheduling problemsManag Sci199541169317030870.9007010.1287/mnsc.41.10.1693
– reference: VallsVBallestinFQuintanillaSA population-based approach to the resource-constrained project scheduling problemAnn Oper Res200413130532420958091066.9004410.1023/B:ANOR.0000039524.09792.c9
– reference: HartmannSA self-adapting genetic algorithm for project scheduling under resource constraintsNav Res Logist2002494334481013.9006210.1002/nav.10029
– reference: ChenRMWuCLWangCMLoSTUsing novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIBExpert Syst Appl20103731899191010.1016/j.eswa.2009.07.024
– reference: ZhangHLiXDLiHHuangFLParticle swarm optimization-based schemes for resource-constrained project schedulingAutom Constr200514339340410.1016/j.autcon.2004.08.006
– reference: KolischRHartmannSProject scheduling—recent models, algorithms and applications1999BostonKluwer Academic147178
– reference: HartmannSKolischRExperimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problemEur J Oper Res200012723944070985.9003610.1016/S0377-2217(99)00485-3
– reference: ÖzdamarLUlusoyGA survey on the resourceconstrained project scheduling problemIIE Trans19952757458610.1080/07408179508936773
– reference: Demeulemeester E, Herroelen W (1995) New benchmark results for the resource-constrained project scheduling problem. In: Proceedings of the INFORMS Singapore international meeting, Singapore
– reference: HeilmannRA branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lagsEur J Oper Res2003144234836519362991012.9051310.1016/S0377-2217(02)00136-4
– reference: ZamaniRAn efficient time-windowing procedure for scheduling projects under multiple resource constraintsOR Spectrum20042642344420640651109.9004810.1007/s00291-003-0158-y
– reference: PritskerAABWattersLJWolfePMMultiproject scheduling with limited resources: a zero-one programming approachManag Sci19691619310810.1287/mnsc.16.1.93
– reference: ChenFWandLAn effective shuffled frog-leaping algorithm for resource-constrained project scheduling problemComput Oper Res2011395890901
– reference: KennedyJEberhartRCProceedings of IEEE international conference on neural networks1995AustraliaPerth1942194810.1109/ICNN.1995.488968
– reference: ZamaniRA parallel complete anytime procedure for project scheduling under multiple resource constraintsInt J Adv Manuf Technol20105035336210.1007/s00170-009-2483-z
– reference: TreleaICThe particle swarm optimization algorithm: convergence analysis and parameter selectionInf Process Lett200385631732519564541156.9046310.1016/S0020-0190(02)00447-7
– reference: JarbouiBDamakNSiarryPRebaiAA combinatorial particle swarm optimization for solving multi-mode resource-constrained project schedulingAppl Math Comput20081051299308237921610.1016/j.amc.2007.04.096
– reference: BruckerPDrexlAMöhringRNeumannKPeschEResource-constrained project scheduling: notation, classification, models, and methodsEur J Oper Res199911213410937.9003010.1016/S0377-2217(98)00204-5
– reference: BlazewiczJLenstraJKRinooy KanAHGScheduling subject to resource constraints: classification and complexityDiscrete Appl Math1983511246788150516.6803710.1016/0166-218X(83)90012-4
– reference: LuMLamHCDaiFResource-constrained critical path analysis based on discrete event simulation and particle swarm optimizationAutom Constr200817667068110.1016/j.autcon.2007.11.004
– reference: VallsVBallestinFQuintanillaMSJustification and RCPSP: a technique that paysEur J Oper Res20051653753861066.9004510.1016/j.ejor.2004.04.008
– volume-title: Scheduling of resource-constrained projects
  year: 2000
  ident: 4679_CR6
  doi: 10.1007/978-1-4615-4629-0
– ident: 4679_CR17
– volume: 185
  start-page: 495
  issue: 2
  year: 2008
  ident: 4679_CR25
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.12.033
– start-page: 1942
  volume-title: Proceedings of IEEE international conference on neural networks
  year: 1995
  ident: 4679_CR30
  doi: 10.1109/ICNN.1995.488968
– volume-title: Project scheduling: a research handbook
  year: 2002
  ident: 4679_CR35
– volume: 16
  start-page: 93
  issue: 1
  year: 1969
  ident: 4679_CR4
  publication-title: Manag Sci
  doi: 10.1287/mnsc.16.1.93
– volume: 17
  start-page: 670
  issue: 6
  year: 2008
  ident: 4679_CR34
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2007.11.004
– volume: 14
  start-page: 393
  issue: 3
  year: 2005
  ident: 4679_CR31
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2004.08.006
– volume: 39
  start-page: 890
  issue: 5
  year: 2011
  ident: 4679_CR41
  publication-title: Comput Oper Res
– volume: 25
  start-page: 279
  issue: 4
  year: 1998
  ident: 4679_CR16
  publication-title: Comput Oper Res
  doi: 10.1016/S0305-0548(97)00055-5
– volume: 41
  start-page: 1693
  year: 1995
  ident: 4679_CR40
  publication-title: Manag Sci
  doi: 10.1287/mnsc.41.10.1693
– volume: 174
  start-page: 23
  issue: 1
  year: 2006
  ident: 4679_CR20
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.01.065
– volume: 165
  start-page: 375
  year: 2005
  ident: 4679_CR39
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2004.04.008
– ident: 4679_CR11
– volume: 149
  start-page: 268
  issue: 2
  year: 2003
  ident: 4679_CR27
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(02)00761-0
– volume: 144
  start-page: 348
  issue: 2
  year: 2003
  ident: 4679_CR12
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(02)00136-4
– volume: 13
  start-page: 80
  issue: 11
  year: 1993
  ident: 4679_CR14
  publication-title: Int J Oper Prod Manag
  doi: 10.1108/01443579310046454
– volume: 112
  start-page: 3
  issue: 1
  year: 1999
  ident: 4679_CR18
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(98)00204-5
– volume: 5
  start-page: 11
  year: 1983
  ident: 4679_CR13
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(83)90012-4
– volume-title: An integrated classification scheme for resource scheduling. Research Report 9905,
  year: 1999
  ident: 4679_CR1
– volume: 24
  start-page: 83
  year: 2006
  ident: 4679_CR32
  publication-title: Int J Proj Manag
  doi: 10.1016/j.ijproman.2005.06.006
– volume: 50
  start-page: 353
  year: 2010
  ident: 4679_CR3
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-009-2483-z
– volume: 37
  start-page: 1899
  issue: 3
  year: 2010
  ident: 4679_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.07.024
– volume: 38
  start-page: 3
  issue: 1
  year: 2011
  ident: 4679_CR9
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2009.12.011
– start-page: 147
  volume-title: Project scheduling—recent models, algorithms and applications
  year: 1999
  ident: 4679_CR19
  doi: 10.1007/978-1-4615-5533-9_7
– volume: 90
  start-page: 320
  issue: 2
  year: 1996
  ident: 4679_CR38
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(95)00357-6
– volume: 85
  start-page: 317
  issue: 6
  year: 2003
  ident: 4679_CR37
  publication-title: Inf Process Lett
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 27
  start-page: 574
  year: 1995
  ident: 4679_CR15
  publication-title: IIE Trans
  doi: 10.1080/07408179508936773
– volume: 34
  start-page: 584
  year: 2007
  ident: 4679_CR2
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-006-0631-2
– volume: 54
  start-page: 614
  issue: 6
  year: 2003
  ident: 4679_CR23
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2601563
– volume-title: Swarm intelligence: collective, adaptive
  year: 2001
  ident: 4679_CR36
– volume: 127
  start-page: 394
  issue: 2
  year: 2000
  ident: 4679_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(99)00485-3
– start-page: pp 557
  volume-title: Essays and surveys in metaheuristics
  year: 2002
  ident: 4679_CR26
  doi: 10.1007/978-1-4615-1507-4_25
– volume: 107
  start-page: 272
  issue: 2
  year: 1998
  ident: 4679_CR10
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(97)00335-4
– volume: 131
  start-page: 305
  year: 2004
  ident: 4679_CR24
  publication-title: Ann Oper Res
  doi: 10.1023/B:ANOR.0000039524.09792.c9
– volume: 49
  start-page: 433
  year: 2002
  ident: 4679_CR22
  publication-title: Nav Res Logist
  doi: 10.1002/nav.10029
– ident: 4679_CR5
– volume: 26
  start-page: 423
  year: 2004
  ident: 4679_CR28
  publication-title: OR Spectrum
  doi: 10.1007/s00291-003-0158-y
– volume: 47
  start-page: 201
  year: 2000
  ident: 4679_CR42
  publication-title: Nav Res Logist
  doi: 10.1002/(SICI)1520-6750(200004)47:3<201::AID-NAV2>3.0.CO;2-L
– volume: 44
  start-page: 714
  issue: 5
  year: 1998
  ident: 4679_CR8
  publication-title: Manag Sci
  doi: 10.1287/mnsc.44.5.714
– volume: 54
  start-page: 614
  issue: 6
  year: 2003
  ident: 4679_CR7
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2601563
– volume: 105
  start-page: 299
  issue: 1
  year: 2008
  ident: 4679_CR33
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.04.096
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.269537
Snippet In this paper, an improved particle swarm optimization (PSO) algorithm is proposed for the resource-constrained project scheduling problem (RCPSP) which is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2627
SubjectTerms Algorithms
CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Lower bounds
Mechanical Engineering
Media Management
Original Article
Particle swarm optimization
Performance enhancement
Production planning
Production scheduling
Project management
Resource scheduling
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gcIADb8RgoBw4gSLapGuTE5oQEwc0IfHQblXrpNIk9mAdsJ-Pk6UbILELx6pN1NaO_cWO_RFy3uSG8yIKWa6aBjcoOmJKATCVaQ4JzzPuqtJe7pNOR3a76sEH3Ep_rLKyic5Q6yHYGPkVwgQuLHtScD16Y5Y1ymZXPYXGKlmzXRJCd3TvsdKnUCWWE3Oub1xZIvqFPouoKWZZLp91iENXOofbEmkXnqyyoIFrOuooWkLO0LQoNv3pxxbg9Fc-1bmp9vZ_P3CHbHmASlszjdolK2awRza_tS3cJ2lrQHsuGGE0HXndo-VnNu7TIZqgvq_tpAiIKQJMOvY5AgYWjVpSCjtwFgOiuL1Gd2er4qlntzkgz-3bp5s75okaGIgwnrA40FomKuBZkmkZg9Jcy8gYdHxRnkkBeaZiDiLOhQZTJJmIQOLToBLghdLikNQGw4E5IjRCR5BIo8MCDUVuhMRriKFAZIh-VECdBNVvT8F3Mbfv_ZrO-y87SaUoqdRKKp3WycV8yGjWwmPZw41KOqlfzWW6EE2dXFbyXdz-c7Lj5ZOdkA3uyDXsccIGqU3G7-aUrMPHpFeOz5wqfwGnGfdi
  priority: 102
  providerName: ProQuest
Title An improved particle swarm optimization for the resource-constrained project scheduling problem
URI https://link.springer.com/article/10.1007/s00170-012-4679-x
https://www.proquest.com/docview/2262369010
Volume 67
WOSCitedRecordID wos000322326300055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MeNCDbyM-SA-eNE3Ydtltj2ggHgwhoITbZnfaTUjkEcDHz3dauqBGTfS42XYf02nnm05nPkIu69xwnocBy1TdoIOiQ6YUAFOp5hDzLOUuK61_H7fbcjBQHZ_HPS9OuxchSbdSr5LdXKkXdH05w8mtGALHMlo7afkaur1-oUSBii0R5krJuLLs82slFmFdLENbPtQQBS5fDn0RaWebLEKf373ys_FaI9IvQVRnm1q7__qrPbLjoShtLHVnn2yY8QHZ_lCg8JAkjTEdum0Ho-nUaxmdv6azEZ3gYjPyWZwUoS9FKElnPhrAwOJOSz9hOy53eyg60mjYbP479Tw2R-Sx1Xy4vWOekoGBCKIFi2pay1jVeBqnWkagNNcyNAZNXJilUkCWqoiDiDKhweRxKkKQ2BpUDDxXWhyT0ngyNieEhrjkx9LoIMclITNC4jVEkCMGRIspoEJqhawT8PXK7Xc_JatKy052CcousbJL3irkatVluizW8Vvj82IAEz9v5wmCUS4sR1etQq6LAVvf_vFhp39qfUa2uGPVsOcIz0lpMXs2F2QTXhbD-axKyjfNdqdbtcdQe1Wn3O9YivA7
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgk48FnUhVJ8gAvIamJnE_uAUAWtWnVZIVFQbyYZO9VK7e6yWWj5U_xGxo6zC0jtrQeOUWIrid-Mnz2eeQAv-sIJUWcpr3Tf0QLFZlxrRK5LK7AQVSlCVtqXQTEcquNj_XEFfnW5MP5YZecTg6O2E_R75NtEE4T06knJ2-k37lWjfHS1k9BoYXHofp7Tkq15c_CexvelEHu7R-_2eVQV4CjTfM7zxFpV6ESURWlVjtoKqzLnyEtnVakkVqXOBcq8khZdXZQyQ0VPoy5Q1NpK6vcGrBGNEDocFfzU4TfVhdfgXOBbaC98v7QfmfVlG1WLUY48Dal6tAxS3tBVF3VNQpHTIAmTCk6uTPOLv-fNJRn-J34bpsW9e__bD70PdyMBZzutxTyAFTd-CHf-KMv4CMzOmI3CZouzbBptizXn5eyMTcjFnsXcVUaEnxGBZrMYA-Ho2bYX3fAN2z0u1pBZWH_e_4RF9Z51-HwtX_gYVseTsdsAltFEVyhn05ocYeWkomvMsSbmSzxBYg-SbpgNxirt_r1PzaK-dECGIWQYjwxz0YNXiybTtkTJVQ9vdmgw0Vs1ZgmFHrzu8LS8fWlnT67u7Dnc2j_6MDCDg-HhU7gtgpCIPzq5Cavz2Xf3DG7ij_momW0FM2Lw9bph9htgmFZs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3E6NQ8-KWFr0rXJo6hDUYbgB3sL7SWFgdaxzY8_30ubbioqiI-lST8ul9zvcrn7EXLQ5pbzLAxYqtoWHRQTMqUAmEoMh5inCS-y0u6v4m5X9nrq2vOcjqrT7lVIssxpcFWa8nFzYLLmJPGtKPuCbjBnONEVQxA5G7pz9M5dv7mvFCpQsSPFnCgcV46JfqrQImyLMszlww5RUOTOoV8i3cyTVRj0u1d-NmRTdPoloFrYqc7yv_9whSx5iEqPS51aJTM2XyOLHwoXrhN9nNN-sR1hDR147aOj12T4SJ9wEXr02Z0UITFFiEmHPkrAwOFRR0vhOpa7QBQdbDR4Li-een6bDXLXObs9OWeeqoGBCKIxi1rGyFi1eBInRkagDDcytBZNX5gmUkCaqIiDiFJhwGZxIkKQ2BpUDDxTRmySWv6U2y1CQzQFsbQmyHCpSK2QeA0RZDi6aEkF1EmrkrsGX8fcffeDnlRgLmSnUXbayU6_1cnhpMugLOLxW-NGNZjaz-eRRpDKhePuatXJUTV409s_Pmz7T633yfz1aUdfXXQvd8gCL4g33FHDBqmNh892l8zBy7g_Gu4VWv4OU1T5cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+particle+swarm+optimization+for+the+resource-constrained+project+scheduling+problem&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Jia%2C+Qiong&rft.au=Seo%2C+Yoonho&rft.date=2013-08-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=67&rft.issue=9-12&rft.spage=2627&rft.epage=2638&rft_id=info:doi/10.1007%2Fs00170-012-4679-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_012_4679_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon