Generalized Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation

This paper considers the Cauchy problem of a semi-linear elliptic equation and uses a generalized Tikhonov-type regularization method to overcome its ill-posedness. The existence, uniqueness, and stability for regularized solution are proven. Under an a priori bound assumption for exact solution, we...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 81; číslo 3; s. 833 - 851
Hlavní autoři: Zhang, Hongwu, Zhang, Xiaoju
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2019
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers the Cauchy problem of a semi-linear elliptic equation and uses a generalized Tikhonov-type regularization method to overcome its ill-posedness. The existence, uniqueness, and stability for regularized solution are proven. Under an a priori bound assumption for exact solution, we derive the convergence estimate of H ö lder type for this method. An application of this method to the Cauchy problem of Helmholtz equation is discussed, and we investigate the stability and convergence estimates for different wave numbers. Finally, an iterative scheme is constructed to calculate the regularization solution, numerical results show that this method is stable and feasible.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-018-0573-4