A supernodal block factorized sparse approximate inverse for non-symmetric linear systems

The concept of supernodes, originally developed to accelerate direct solution methods for linear systems, is generalized to block factorized sparse approximate inverse (Block FSAI) preconditioning of non-symmetric linear systems. It is shown that aggregating the unknowns in clusters that are process...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 78; číslo 1; s. 333 - 354
Hlavní autoři: Ferronato, Massimiliano, Pini, Giorgio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2018
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The concept of supernodes, originally developed to accelerate direct solution methods for linear systems, is generalized to block factorized sparse approximate inverse (Block FSAI) preconditioning of non-symmetric linear systems. It is shown that aggregating the unknowns in clusters that are processed together is particularly useful both to reduce the cost for the preconditioner setup and accelerate the convergence of the iterative solver. A set of numerical experiments performed on matrices arising from the meshfree discretization of 2D and 3D potential problems, where a very large number of nodal contacts is usually found, shows that the supernodal Block FSAI preconditioner outperforms the native algorithm and exhibits a much more stable behavior with respect to the variation of the user-specified parameters.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-017-0378-x