Dynamics Identification in Evolution Models Using Radial Basis Functions
The problem of identifying an unknown function of the state of an evolution model with differential equations is considered in the framework of a minimization problem. The well-posedness of this minimization problem as well as unique solvability is proven. The analysis of the dependence of the ident...
Uloženo v:
| Vydáno v: | Journal of dynamical and control systems Ročník 23; číslo 2; s. 317 - 335 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 1079-2724, 1573-8698 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The problem of identifying an unknown function of the state of an evolution model with differential equations is considered in the framework of a minimization problem. The well-posedness of this minimization problem as well as unique solvability is proven. The analysis of the dependence of the identified function on the data is presented by means of the derivative of the “data–to–function” mapping. Moreover, the infinite dimensional function space, where the unknown function is sought, is discretized by suitable radial basis functions that are chosen such that optimal approximation results are obtained. The numerical treatment of a representative evolution model and the application to a bio-chemical model illustrate the proposed approach. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1079-2724 1573-8698 |
| DOI: | 10.1007/s10883-016-9322-y |