An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding

Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 32; číslo 4; s. 1017 - 1035
Hlavní autoři: Wu, Chenchen, Xu, Dachuan, Du, Donglei, Xu, Wenqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2016
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-015-9880-z