An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding
Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear pr...
Gespeichert in:
| Veröffentlicht in: | Journal of combinatorial optimization Jg. 32; H. 4; S. 1017 - 1035 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2016
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the
balanced Max-3-Uncut problem
. We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work. |
|---|---|
| AbstractList | Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the
balanced Max-3-Uncut problem
. We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work. Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem. We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work. |
| Author | Wu, Chenchen Xu, Wenqing Du, Donglei Xu, Dachuan |
| Author_xml | – sequence: 1 givenname: Chenchen surname: Wu fullname: Wu, Chenchen organization: College of Science, Tianjin University of Technology – sequence: 2 givenname: Dachuan surname: Xu fullname: Xu, Dachuan email: xudc@bjut.edu.cn organization: College of Applied Sciences, Beijing University of Technology – sequence: 3 givenname: Donglei surname: Du fullname: Du, Donglei organization: Faculty of Business Administration, University of New Brunswick – sequence: 4 givenname: Wenqing surname: Xu fullname: Xu, Wenqing organization: College of Applied Sciences, Beijing University of Technology, Department of Mathematics and Statistics, California State University |
| BookMark | eNp9kMtOAyEUhonRxOsDuCNxjcIwF7o0jbekxo1dE6CHlmYGKjBJ9eml1oUx0RU_yf9xDt8pOvTBA0KXjF4zSrubxKjoBKGsIRMhKPk4QCes6TiphGgPS-aiIu2ENsfoNKU1pbTk-gSFW4_VZhPD1g0qu1Bu_TJEl1cDtiHivAKsVa-8gQV-VlvCydybMeOC6B4GPCbnl9iEYdPDFicY3AKs8y7DrrKMahh2hRhGvyjhHB1Z1Se4-D7P0Pz-7nX6SGYvD0_T2xkxnLWZNNowrVtLeaOZqoGCtsAZVZWtebswdqI7rUUNpmZ60mpuOtXaWjV1-a4Axc_Q1f7dssTbCCnLdRijLyMlK35E3fGqKy22b5kYUopg5SYWD_FdMip3XuXeqyxe5c6r_ChM94sxLn-py1G5_l-y2pOpTPFLiD92-hP6BCXkkmc |
| CitedBy_id | crossref_primary_10_1007_s10957_021_01829_8 crossref_primary_10_1016_j_compeleceng_2023_109048 |
| Cites_doi | 10.1080/02331934.2011.592527 10.1007/s10878-013-9673-1 10.1137/1.9781611973099.33 10.1137/04061341X 10.1137/1.9781611973105.21 10.1007/BF02523688 10.1145/972639.972644 10.1145/227683.227684 10.1007/978-3-642-02026-1_20 10.1002/rsa.10035 10.1007/PL00011415 10.1145/321958.321975 10.1016/j.jalgor.2004.11.003 10.1287/opre.40.1.S170 10.1145/301250.301431 10.1007/3-540-49116-3_22 10.1007/s101070100288 10.1023/A:1026094110647 10.1016/j.jcss.2003.07.012 10.1137/S1052623400380079 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2015 Copyright Springer Science & Business Media 2016 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Copyright Springer Science & Business Media 2016 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10878-015-9880-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| EndPage | 1035 |
| ExternalDocumentID | 10_1007_s10878_015_9880_z |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 283106 funderid: http://dx.doi.org/10.13039/501100000038 – fundername: NSF of China grantid: 11071268 – fundername: NSF of China grantid: 11371001 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c316t-5bc1bb6f035b1a4e0ebfe310a2f436dcf9b7bb84ec41b96b3c7a6f4a548868ea3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387107700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Wed Sep 17 13:42:01 EDT 2025 Sat Nov 29 04:54:19 EST 2025 Tue Nov 18 21:44:02 EST 2025 Fri Feb 21 02:33:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Complex semidefinite programming Approximation algorithm Balanced Max-3-Uncut |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-5bc1bb6f035b1a4e0ebfe310a2f436dcf9b7bb84ec41b96b3c7a6f4a548868ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880847327 |
| PQPubID | 2043856 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_1880847327 crossref_primary_10_1007_s10878_015_9880_z crossref_citationtrail_10_1007_s10878_015_9880_z springer_journals_10_1007_s10878_015_9880_z |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-01 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | LasserreJBAn explicit equivalent positive semidefinite program for nonlinear 0–1 programsSIAM J Optim200212756769188491610.1137/S10526234003800791007.90046 GoemansMXWilliamsonDPApproximation algorithms for MAX-3-CUT and other problems via complex semidefinite programmingJ Comput Syst Sci200468442470205910310.1016/j.jcss.2003.07.0121093.90038 Raghavendra P, Tan N (2012) Approximating CSPs with global cardinality constraints using SDP hierarchies. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Kyoto, pp 373–387 ZhangSHuangYComplex quadratic optimization and semidefinite programmingSIAM J Optim200616871890219756010.1137/04061341X1113.90115 ChoudhurySGaurDKrishnamurtiRAn approximation algorithm for Max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Uncut with capacity constraintsOptimization201261143150287932810.1080/02331934.2011.5925271236.05194 XuDHanJHuangZZhangLImproved approximation algorithms for MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DIRECTED-BISECTION and MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DENSE-SUBGRAPHJ Glob Optim200327399410201281310.1023/A:10260941106471046.90094 FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm RPR}^{2}$$\end{document} rounding technique for semidefinite programsJ Algorithms200660123222894210.1016/j.jalgor.2004.11.0031113.90116 HanQYeYZhangJAn improved rounding method and semidefinite programming relaxation for graph partitionMath Progr Ser B200292509535190576410.1007/s1010701002881008.90042 Austrin P, Benabbas S, Georgiou K (2013) Better balance by being biased: A 0.8776-approximation for Max Bisection. In: 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, New Orleans, pp 277–294 Andersson G (1999) An approximation algorithm for Max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Section. In: 16th Annual Symposium on Theoretical Aspects of Computer Science. Springer Press, Trier, pp 237–247 HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct Algorithms200220382402190061410.1002/rsa.100351017.68089 GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ ACM19954211151145141222810.1145/227683.2276840885.68088 WuCDuDXuDAn improved semidefinite programming hierarchies rounding approximation algorithm for maximum graph bisection problemsJ Comb Optim2015295366329625610.1007/s10878-013-9673-11327.90183 FriezeAMJerrumMImproved approximation algorithms for MAX k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CUT and MAX BISECTIONAlgorithmica1997186781143202910.1007/BF025236880873.68078 KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ ACM200451116214565510.1145/972639.9726441317.90329 YeYA .699-approximation algorithm for Max-BisectionMath Program200190101111181978810.1007/PL000114151059.90119 Ling A (2009) Approximation algorithms for Max 3-Section using complex semidefinite programming relaxation. In: 3rd International Conference on Combinatorial Optimization and Applications. Springer Press, Huangshan, pp 219–230 SahniSGonzalezTP-complete approximation problemsJ ACM19762355556540831310.1145/321958.3219750348.90152 Doids Y, Guruswami V, Khanna S (1999) The 2-catalog segmentation problem. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Baltimore, pp 897–898 FeoTGoldschmidtOKhellafMOne-half approximation algorithms for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problemOper Res199240S170S17310.1287/opre.40.1.S1700745.90072 Zwick U (1999) Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: 31st Annual ACM Symposium on Theory of Computing. ACM Press, Atlanta, pp 679–687 U Feige (9880_CR5) 2006; 60 T Feo (9880_CR6) 1992; 40 9880_CR4 9880_CR2 9880_CR14 9880_CR1 9880_CR15 9880_CR21 D Xu (9880_CR18) 2003; 27 Q Han (9880_CR11) 2002; 92 JB Lasserre (9880_CR13) 2002; 12 S Zhang (9880_CR20) 2006; 16 MX Goemans (9880_CR9) 2004; 68 S Choudhury (9880_CR3) 2012; 61 S Sahni (9880_CR16) 1976; 23 E Halperin (9880_CR10) 2002; 20 AM Frieze (9880_CR7) 1997; 18 J Kleinberg (9880_CR12) 2004; 51 Y Ye (9880_CR19) 2001; 90 MX Goemans (9880_CR8) 1995; 42 C Wu (9880_CR17) 2015; 29 |
| References_xml | – reference: LasserreJBAn explicit equivalent positive semidefinite program for nonlinear 0–1 programsSIAM J Optim200212756769188491610.1137/S10526234003800791007.90046 – reference: Zwick U (1999) Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: 31st Annual ACM Symposium on Theory of Computing. ACM Press, Atlanta, pp 679–687 – reference: FriezeAMJerrumMImproved approximation algorithms for MAX k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CUT and MAX BISECTIONAlgorithmica1997186781143202910.1007/BF025236880873.68078 – reference: GoemansMXWilliamsonDPApproximation algorithms for MAX-3-CUT and other problems via complex semidefinite programmingJ Comput Syst Sci200468442470205910310.1016/j.jcss.2003.07.0121093.90038 – reference: Andersson G (1999) An approximation algorithm for Max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Section. In: 16th Annual Symposium on Theoretical Aspects of Computer Science. Springer Press, Trier, pp 237–247 – reference: XuDHanJHuangZZhangLImproved approximation algorithms for MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DIRECTED-BISECTION and MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DENSE-SUBGRAPHJ Glob Optim200327399410201281310.1023/A:10260941106471046.90094 – reference: WuCDuDXuDAn improved semidefinite programming hierarchies rounding approximation algorithm for maximum graph bisection problemsJ Comb Optim2015295366329625610.1007/s10878-013-9673-11327.90183 – reference: YeYA .699-approximation algorithm for Max-BisectionMath Program200190101111181978810.1007/PL000114151059.90119 – reference: KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ ACM200451116214565510.1145/972639.9726441317.90329 – reference: Austrin P, Benabbas S, Georgiou K (2013) Better balance by being biased: A 0.8776-approximation for Max Bisection. In: 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, New Orleans, pp 277–294 – reference: FeoTGoldschmidtOKhellafMOne-half approximation algorithms for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problemOper Res199240S170S17310.1287/opre.40.1.S1700745.90072 – reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ ACM19954211151145141222810.1145/227683.2276840885.68088 – reference: SahniSGonzalezTP-complete approximation problemsJ ACM19762355556540831310.1145/321958.3219750348.90152 – reference: ZhangSHuangYComplex quadratic optimization and semidefinite programmingSIAM J Optim200616871890219756010.1137/04061341X1113.90115 – reference: HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct Algorithms200220382402190061410.1002/rsa.100351017.68089 – reference: ChoudhurySGaurDKrishnamurtiRAn approximation algorithm for Max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Uncut with capacity constraintsOptimization201261143150287932810.1080/02331934.2011.5925271236.05194 – reference: Ling A (2009) Approximation algorithms for Max 3-Section using complex semidefinite programming relaxation. In: 3rd International Conference on Combinatorial Optimization and Applications. Springer Press, Huangshan, pp 219–230 – reference: FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm RPR}^{2}$$\end{document} rounding technique for semidefinite programsJ Algorithms200660123222894210.1016/j.jalgor.2004.11.0031113.90116 – reference: Doids Y, Guruswami V, Khanna S (1999) The 2-catalog segmentation problem. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Baltimore, pp 897–898 – reference: HanQYeYZhangJAn improved rounding method and semidefinite programming relaxation for graph partitionMath Progr Ser B200292509535190576410.1007/s1010701002881008.90042 – reference: Raghavendra P, Tan N (2012) Approximating CSPs with global cardinality constraints using SDP hierarchies. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Kyoto, pp 373–387 – volume: 61 start-page: 143 year: 2012 ident: 9880_CR3 publication-title: Optimization doi: 10.1080/02331934.2011.592527 – volume: 29 start-page: 53 year: 2015 ident: 9880_CR17 publication-title: J Comb Optim doi: 10.1007/s10878-013-9673-1 – ident: 9880_CR15 doi: 10.1137/1.9781611973099.33 – volume: 16 start-page: 871 year: 2006 ident: 9880_CR20 publication-title: SIAM J Optim doi: 10.1137/04061341X – ident: 9880_CR2 doi: 10.1137/1.9781611973105.21 – volume: 18 start-page: 67 year: 1997 ident: 9880_CR7 publication-title: Algorithmica doi: 10.1007/BF02523688 – volume: 51 start-page: 1 year: 2004 ident: 9880_CR12 publication-title: J ACM doi: 10.1145/972639.972644 – ident: 9880_CR4 – volume: 42 start-page: 1115 year: 1995 ident: 9880_CR8 publication-title: J ACM doi: 10.1145/227683.227684 – ident: 9880_CR14 doi: 10.1007/978-3-642-02026-1_20 – volume: 20 start-page: 382 year: 2002 ident: 9880_CR10 publication-title: Random Struct Algorithms doi: 10.1002/rsa.10035 – volume: 90 start-page: 101 year: 2001 ident: 9880_CR19 publication-title: Math Program doi: 10.1007/PL00011415 – volume: 23 start-page: 555 year: 1976 ident: 9880_CR16 publication-title: J ACM doi: 10.1145/321958.321975 – volume: 60 start-page: 1 year: 2006 ident: 9880_CR5 publication-title: J Algorithms doi: 10.1016/j.jalgor.2004.11.003 – volume: 40 start-page: S170 year: 1992 ident: 9880_CR6 publication-title: Oper Res doi: 10.1287/opre.40.1.S170 – ident: 9880_CR21 doi: 10.1145/301250.301431 – ident: 9880_CR1 doi: 10.1007/3-540-49116-3_22 – volume: 92 start-page: 509 year: 2002 ident: 9880_CR11 publication-title: Math Progr Ser B doi: 10.1007/s101070100288 – volume: 27 start-page: 399 year: 2003 ident: 9880_CR18 publication-title: J Glob Optim doi: 10.1023/A:1026094110647 – volume: 68 start-page: 442 year: 2004 ident: 9880_CR9 publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2003.07.012 – volume: 12 start-page: 756 year: 2002 ident: 9880_CR13 publication-title: SIAM J Optim doi: 10.1137/S1052623400380079 |
| SSID | ssj0009054 |
| Score | 2.0711055 |
| Snippet | Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1017 |
| SubjectTerms | Algorithms Approximation Bivariate analysis Circuit design Combinatorial analysis Combinatorics Complex variables Convex and Discrete Geometry Integrated circuits Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Partitions (mathematics) Rounding Semidefinite programming Theory of Computation |
| Title | An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding |
| URI | https://link.springer.com/article/10.1007/s10878-015-9880-z https://www.proquest.com/docview/1880847327 |
| Volume | 32 |
| WOSCitedRecordID | wos000387107700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg6elEDbpF16HOLw4Iaok91KkyazsHWydjL21_vSH9sUFfTW0JdQ8pJ-X8h730PoMgJIEh6Dk6qgkjDJbQI8mRIfwEFoEVFb556-b3a7vN_3H8o87rSKdq-uJPM_9UqyGzdqsLYLA3GLzNfRBqAdN7vx8ellqbRruUUlW6COcPRzq6vM74b4DEZLhvnlUjTHmvbuv75yD-2U1BK3irWwj9ZUcoC2VwQHodVZqLSmh2jcSnCuKT6LiwRGHA4H40mcvY4wcFkMpliY0EepItwJZ4SSXiKnGS6r0GATND_AeVS6muFUjeJI6diwWFzGfY2MwcSUboKHI9Rr3z7f3JGyAAOR1PYy4gppC-Fpi7rCDpmylNAK-GDoaEa9SGpfNIXgTElmC98DbzdDT7MQTkHc4yqkx6iWjBN1grAfGWrAI8vXgJuOJYxOHfRwmOIODVkdWZUnAlmqk5siGcNgqatsZjaAmQ3MzAbzOrpadHkrpDl-M25U7g3KXZoGRosO0Jk6zTq6rty58vqnwU7_ZH2GtoBleUUCYwPVsslUnaNN-Z7F6eQiX7wfDk_rpg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NmAQ8wNhAlLHNDzwxWUpiJ3EeEVrVaW01QTvxFsWODZFoipoUVf3rOecHLRObtL0lytmKfE6-z7q77wDOUoQkGXA8qUqmKFfCpciTGY0QHKSRKXNN5el-OByKm5voZ1PHXbTZ7m1IsvpTrxW7CasG6_o4kXDocgO2OAKWzeO7uv61Utp1_LqTLVJHPPr5bSjztSlegtGKYf4WFK2wprv_X2_5DvYaakku6r1wAG90_h521wQH8W7wrNJafIDpRU4qTfFFVhcwkuT-djrLyrsJQS5L0JRIm_qodEoGyYIyOs7VvCRNFxpik-ZvSZWVrhek0JMs1SazLJY0eV8TazCzrZvw4hDG3W-jyx5tGjBQxdygpL5UrpSBcZgv3YRrR0ujkQ8mnuEsSJWJZCil4FpxV0YBejtMAsMTPAWJQOiEHcFmPs31MZAotdRApE5kEDc9R1qdOhzhcS08lvAOOK0nYtWok9smGffxSlfZrmyMKxvblY2XHTh_HvJQS3P8zfi0dW_cfKVFbLXoEJ2ZF3bga-vOtcd_muzkn6y_wHZvNOjH_e_DHx9hBxlXUBcznsJmOZvrT_BWPZZZMftcbeQnIjPuig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NNiF4gA02USjghz1tskhiJ3UeK1g1RKkqbSDeotixIRJNqyZFFX895_ygHRpIiLdEOVuRz9Z9J999H8D3BEOSDDhmqpIpypVwKeJkRkMMDtLIhLmm9HS_MxiI6-twWOuc5k21e3MlWfU0WJamrDieJOZ4qfFNWGZY18dJhUMfVuAjt5pBNl3_c7Vg3XX8StUWYSSmgX5zrfm_Kf4NTAu0-eyCtIw7va13__Fn2KwhJ-lWe-QLfNDZNmwsERHi28UTe2u-A-NuRkqu8XlaNTaS-O5mPE2L2xFBjEvQlEhbEql0Qi7iOWX0MlOzgtTqNMQW09-Qslpdz0muR2miTWrRLanrwUbWYGolnfDhK1z2fv09-U1rYQaqmBsU1JfKlTIwDvOlG3PtaGk04sTYM5wFiTKh7EgpuFbclWGAu6ATB4bHmB2JQOiYfYPVbJzpXSBhYiGDSJzQYDz1HGn563CEx7XwWMxb4DReiVTNWm7FM-6iBd-yXdkIVzayKxs9tODH05BJRdnxmnG7cXVUn948shx1GLWZ12nBz8a1S59fmmzvTdZHsDY87UX9s8H5PqwjEAuqHsc2rBbTmT6AT-q-SPPpYbmnHwGzI_du |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximation+algorithm+for+the+balanced+Max-3-Uncut+problem+using+complex+semidefinite+programming+rounding&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Wu%2C+Chenchen&rft.au=Xu%2C+Dachuan&rft.au=Du%2C+Donglei&rft.au=Xu%2C+Wenqing&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=4&rft.spage=1017&rft.epage=1035&rft_id=info:doi/10.1007%2Fs10878-015-9880-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |