An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding

Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization Jg. 32; H. 4; S. 1017 - 1035
Hauptverfasser: Wu, Chenchen, Xu, Dachuan, Du, Donglei, Xu, Wenqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2016
Springer Nature B.V
Schlagworte:
ISSN:1382-6905, 1573-2886
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work.
AbstractList Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem . We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work.
Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem. We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work.
Author Wu, Chenchen
Xu, Wenqing
Du, Donglei
Xu, Dachuan
Author_xml – sequence: 1
  givenname: Chenchen
  surname: Wu
  fullname: Wu, Chenchen
  organization: College of Science, Tianjin University of Technology
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  email: xudc@bjut.edu.cn
  organization: College of Applied Sciences, Beijing University of Technology
– sequence: 3
  givenname: Donglei
  surname: Du
  fullname: Du, Donglei
  organization: Faculty of Business Administration, University of New Brunswick
– sequence: 4
  givenname: Wenqing
  surname: Xu
  fullname: Xu, Wenqing
  organization: College of Applied Sciences, Beijing University of Technology, Department of Mathematics and Statistics, California State University
BookMark eNp9kMtOAyEUhonRxOsDuCNxjcIwF7o0jbekxo1dE6CHlmYGKjBJ9eml1oUx0RU_yf9xDt8pOvTBA0KXjF4zSrubxKjoBKGsIRMhKPk4QCes6TiphGgPS-aiIu2ENsfoNKU1pbTk-gSFW4_VZhPD1g0qu1Bu_TJEl1cDtiHivAKsVa-8gQV-VlvCydybMeOC6B4GPCbnl9iEYdPDFicY3AKs8y7DrrKMahh2hRhGvyjhHB1Z1Se4-D7P0Pz-7nX6SGYvD0_T2xkxnLWZNNowrVtLeaOZqoGCtsAZVZWtebswdqI7rUUNpmZ60mpuOtXaWjV1-a4Axc_Q1f7dssTbCCnLdRijLyMlK35E3fGqKy22b5kYUopg5SYWD_FdMip3XuXeqyxe5c6r_ChM94sxLn-py1G5_l-y2pOpTPFLiD92-hP6BCXkkmc
CitedBy_id crossref_primary_10_1007_s10957_021_01829_8
crossref_primary_10_1016_j_compeleceng_2023_109048
Cites_doi 10.1080/02331934.2011.592527
10.1007/s10878-013-9673-1
10.1137/1.9781611973099.33
10.1137/04061341X
10.1137/1.9781611973105.21
10.1007/BF02523688
10.1145/972639.972644
10.1145/227683.227684
10.1007/978-3-642-02026-1_20
10.1002/rsa.10035
10.1007/PL00011415
10.1145/321958.321975
10.1016/j.jalgor.2004.11.003
10.1287/opre.40.1.S170
10.1145/301250.301431
10.1007/3-540-49116-3_22
10.1007/s101070100288
10.1023/A:1026094110647
10.1016/j.jcss.2003.07.012
10.1137/S1052623400380079
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s10878-015-9880-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 1035
ExternalDocumentID 10_1007_s10878_015_9880_z
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 283106
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: NSF of China
  grantid: 11071268
– fundername: NSF of China
  grantid: 11371001
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-5bc1bb6f035b1a4e0ebfe310a2f436dcf9b7bb84ec41b96b3c7a6f4a548868ea3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387107700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Wed Sep 17 13:42:01 EDT 2025
Sat Nov 29 04:54:19 EST 2025
Tue Nov 18 21:44:02 EST 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Complex semidefinite programming
Approximation algorithm
Balanced Max-3-Uncut
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-5bc1bb6f035b1a4e0ebfe310a2f436dcf9b7bb84ec41b96b3c7a6f4a548868ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880847327
PQPubID 2043856
PageCount 19
ParticipantIDs proquest_journals_1880847327
crossref_primary_10_1007_s10878_015_9880_z
crossref_citationtrail_10_1007_s10878_015_9880_z
springer_journals_10_1007_s10878_015_9880_z
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LasserreJBAn explicit equivalent positive semidefinite program for nonlinear 0–1 programsSIAM J Optim200212756769188491610.1137/S10526234003800791007.90046
GoemansMXWilliamsonDPApproximation algorithms for MAX-3-CUT and other problems via complex semidefinite programmingJ Comput Syst Sci200468442470205910310.1016/j.jcss.2003.07.0121093.90038
Raghavendra P, Tan N (2012) Approximating CSPs with global cardinality constraints using SDP hierarchies. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Kyoto, pp 373–387
ZhangSHuangYComplex quadratic optimization and semidefinite programmingSIAM J Optim200616871890219756010.1137/04061341X1113.90115
ChoudhurySGaurDKrishnamurtiRAn approximation algorithm for Max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Uncut with capacity constraintsOptimization201261143150287932810.1080/02331934.2011.5925271236.05194
XuDHanJHuangZZhangLImproved approximation algorithms for MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DIRECTED-BISECTION and MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DENSE-SUBGRAPHJ Glob Optim200327399410201281310.1023/A:10260941106471046.90094
FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm RPR}^{2}$$\end{document} rounding technique for semidefinite programsJ Algorithms200660123222894210.1016/j.jalgor.2004.11.0031113.90116
HanQYeYZhangJAn improved rounding method and semidefinite programming relaxation for graph partitionMath Progr Ser B200292509535190576410.1007/s1010701002881008.90042
Austrin P, Benabbas S, Georgiou K (2013) Better balance by being biased: A 0.8776-approximation for Max Bisection. In: 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, New Orleans, pp 277–294
Andersson G (1999) An approximation algorithm for Max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Section. In: 16th Annual Symposium on Theoretical Aspects of Computer Science. Springer Press, Trier, pp 237–247
HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct Algorithms200220382402190061410.1002/rsa.100351017.68089
GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ ACM19954211151145141222810.1145/227683.2276840885.68088
WuCDuDXuDAn improved semidefinite programming hierarchies rounding approximation algorithm for maximum graph bisection problemsJ Comb Optim2015295366329625610.1007/s10878-013-9673-11327.90183
FriezeAMJerrumMImproved approximation algorithms for MAX k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CUT and MAX BISECTIONAlgorithmica1997186781143202910.1007/BF025236880873.68078
KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ ACM200451116214565510.1145/972639.9726441317.90329
YeYA .699-approximation algorithm for Max-BisectionMath Program200190101111181978810.1007/PL000114151059.90119
Ling A (2009) Approximation algorithms for Max 3-Section using complex semidefinite programming relaxation. In: 3rd International Conference on Combinatorial Optimization and Applications. Springer Press, Huangshan, pp 219–230
SahniSGonzalezTP-complete approximation problemsJ ACM19762355556540831310.1145/321958.3219750348.90152
Doids Y, Guruswami V, Khanna S (1999) The 2-catalog segmentation problem. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Baltimore, pp 897–898
FeoTGoldschmidtOKhellafMOne-half approximation algorithms for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problemOper Res199240S170S17310.1287/opre.40.1.S1700745.90072
Zwick U (1999) Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: 31st Annual ACM Symposium on Theory of Computing. ACM Press, Atlanta, pp 679–687
U Feige (9880_CR5) 2006; 60
T Feo (9880_CR6) 1992; 40
9880_CR4
9880_CR2
9880_CR14
9880_CR1
9880_CR15
9880_CR21
D Xu (9880_CR18) 2003; 27
Q Han (9880_CR11) 2002; 92
JB Lasserre (9880_CR13) 2002; 12
S Zhang (9880_CR20) 2006; 16
MX Goemans (9880_CR9) 2004; 68
S Choudhury (9880_CR3) 2012; 61
S Sahni (9880_CR16) 1976; 23
E Halperin (9880_CR10) 2002; 20
AM Frieze (9880_CR7) 1997; 18
J Kleinberg (9880_CR12) 2004; 51
Y Ye (9880_CR19) 2001; 90
MX Goemans (9880_CR8) 1995; 42
C Wu (9880_CR17) 2015; 29
References_xml – reference: LasserreJBAn explicit equivalent positive semidefinite program for nonlinear 0–1 programsSIAM J Optim200212756769188491610.1137/S10526234003800791007.90046
– reference: Zwick U (1999) Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: 31st Annual ACM Symposium on Theory of Computing. ACM Press, Atlanta, pp 679–687
– reference: FriezeAMJerrumMImproved approximation algorithms for MAX k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-CUT and MAX BISECTIONAlgorithmica1997186781143202910.1007/BF025236880873.68078
– reference: GoemansMXWilliamsonDPApproximation algorithms for MAX-3-CUT and other problems via complex semidefinite programmingJ Comput Syst Sci200468442470205910310.1016/j.jcss.2003.07.0121093.90038
– reference: Andersson G (1999) An approximation algorithm for Max p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Section. In: 16th Annual Symposium on Theoretical Aspects of Computer Science. Springer Press, Trier, pp 237–247
– reference: XuDHanJHuangZZhangLImproved approximation algorithms for MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DIRECTED-BISECTION and MAX n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/2$$\end{document}-DENSE-SUBGRAPHJ Glob Optim200327399410201281310.1023/A:10260941106471046.90094
– reference: WuCDuDXuDAn improved semidefinite programming hierarchies rounding approximation algorithm for maximum graph bisection problemsJ Comb Optim2015295366329625610.1007/s10878-013-9673-11327.90183
– reference: YeYA .699-approximation algorithm for Max-BisectionMath Program200190101111181978810.1007/PL000114151059.90119
– reference: KleinbergJPapadimitriouCRaghavanPSegmentation problemsJ ACM200451116214565510.1145/972639.9726441317.90329
– reference: Austrin P, Benabbas S, Georgiou K (2013) Better balance by being biased: A 0.8776-approximation for Max Bisection. In: 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, New Orleans, pp 277–294
– reference: FeoTGoldschmidtOKhellafMOne-half approximation algorithms for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problemOper Res199240S170S17310.1287/opre.40.1.S1700745.90072
– reference: GoemansMXWilliamsonDPImproved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ ACM19954211151145141222810.1145/227683.2276840885.68088
– reference: SahniSGonzalezTP-complete approximation problemsJ ACM19762355556540831310.1145/321958.3219750348.90152
– reference: ZhangSHuangYComplex quadratic optimization and semidefinite programmingSIAM J Optim200616871890219756010.1137/04061341X1113.90115
– reference: HalperinEZwickUA unified framework for obtaining improved approximation algorithms for maximum graph bisection problemsRandom Struct Algorithms200220382402190061410.1002/rsa.100351017.68089
– reference: ChoudhurySGaurDKrishnamurtiRAn approximation algorithm for Max k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-Uncut with capacity constraintsOptimization201261143150287932810.1080/02331934.2011.5925271236.05194
– reference: Ling A (2009) Approximation algorithms for Max 3-Section using complex semidefinite programming relaxation. In: 3rd International Conference on Combinatorial Optimization and Applications. Springer Press, Huangshan, pp 219–230
– reference: FeigeULangbergMThe RPR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm RPR}^{2}$$\end{document} rounding technique for semidefinite programsJ Algorithms200660123222894210.1016/j.jalgor.2004.11.0031113.90116
– reference: Doids Y, Guruswami V, Khanna S (1999) The 2-catalog segmentation problem. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Baltimore, pp 897–898
– reference: HanQYeYZhangJAn improved rounding method and semidefinite programming relaxation for graph partitionMath Progr Ser B200292509535190576410.1007/s1010701002881008.90042
– reference: Raghavendra P, Tan N (2012) Approximating CSPs with global cardinality constraints using SDP hierarchies. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM Press, Kyoto, pp 373–387
– volume: 61
  start-page: 143
  year: 2012
  ident: 9880_CR3
  publication-title: Optimization
  doi: 10.1080/02331934.2011.592527
– volume: 29
  start-page: 53
  year: 2015
  ident: 9880_CR17
  publication-title: J Comb Optim
  doi: 10.1007/s10878-013-9673-1
– ident: 9880_CR15
  doi: 10.1137/1.9781611973099.33
– volume: 16
  start-page: 871
  year: 2006
  ident: 9880_CR20
  publication-title: SIAM J Optim
  doi: 10.1137/04061341X
– ident: 9880_CR2
  doi: 10.1137/1.9781611973105.21
– volume: 18
  start-page: 67
  year: 1997
  ident: 9880_CR7
  publication-title: Algorithmica
  doi: 10.1007/BF02523688
– volume: 51
  start-page: 1
  year: 2004
  ident: 9880_CR12
  publication-title: J ACM
  doi: 10.1145/972639.972644
– ident: 9880_CR4
– volume: 42
  start-page: 1115
  year: 1995
  ident: 9880_CR8
  publication-title: J ACM
  doi: 10.1145/227683.227684
– ident: 9880_CR14
  doi: 10.1007/978-3-642-02026-1_20
– volume: 20
  start-page: 382
  year: 2002
  ident: 9880_CR10
  publication-title: Random Struct Algorithms
  doi: 10.1002/rsa.10035
– volume: 90
  start-page: 101
  year: 2001
  ident: 9880_CR19
  publication-title: Math Program
  doi: 10.1007/PL00011415
– volume: 23
  start-page: 555
  year: 1976
  ident: 9880_CR16
  publication-title: J ACM
  doi: 10.1145/321958.321975
– volume: 60
  start-page: 1
  year: 2006
  ident: 9880_CR5
  publication-title: J Algorithms
  doi: 10.1016/j.jalgor.2004.11.003
– volume: 40
  start-page: S170
  year: 1992
  ident: 9880_CR6
  publication-title: Oper Res
  doi: 10.1287/opre.40.1.S170
– ident: 9880_CR21
  doi: 10.1145/301250.301431
– ident: 9880_CR1
  doi: 10.1007/3-540-49116-3_22
– volume: 92
  start-page: 509
  year: 2002
  ident: 9880_CR11
  publication-title: Math Progr Ser B
  doi: 10.1007/s101070100288
– volume: 27
  start-page: 399
  year: 2003
  ident: 9880_CR18
  publication-title: J Glob Optim
  doi: 10.1023/A:1026094110647
– volume: 68
  start-page: 442
  year: 2004
  ident: 9880_CR9
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2003.07.012
– volume: 12
  start-page: 756
  year: 2002
  ident: 9880_CR13
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623400380079
SSID ssj0009054
Score 2.0711055
Snippet Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1017
SubjectTerms Algorithms
Approximation
Bivariate analysis
Circuit design
Combinatorial analysis
Combinatorics
Complex variables
Convex and Discrete Geometry
Integrated circuits
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Partitions (mathematics)
Rounding
Semidefinite programming
Theory of Computation
Title An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding
URI https://link.springer.com/article/10.1007/s10878-015-9880-z
https://www.proquest.com/docview/1880847327
Volume 32
WOSCitedRecordID wos000387107700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg6elEDbpF16HOLw4Iaok91KkyazsHWydjL21_vSH9sUFfTW0JdQ8pJ-X8h730PoMgJIEh6Dk6qgkjDJbQI8mRIfwEFoEVFb556-b3a7vN_3H8o87rSKdq-uJPM_9UqyGzdqsLYLA3GLzNfRBqAdN7vx8ellqbRruUUlW6COcPRzq6vM74b4DEZLhvnlUjTHmvbuv75yD-2U1BK3irWwj9ZUcoC2VwQHodVZqLSmh2jcSnCuKT6LiwRGHA4H40mcvY4wcFkMpliY0EepItwJZ4SSXiKnGS6r0GATND_AeVS6muFUjeJI6diwWFzGfY2MwcSUboKHI9Rr3z7f3JGyAAOR1PYy4gppC-Fpi7rCDpmylNAK-GDoaEa9SGpfNIXgTElmC98DbzdDT7MQTkHc4yqkx6iWjBN1grAfGWrAI8vXgJuOJYxOHfRwmOIODVkdWZUnAlmqk5siGcNgqatsZjaAmQ3MzAbzOrpadHkrpDl-M25U7g3KXZoGRosO0Jk6zTq6rty58vqnwU7_ZH2GtoBleUUCYwPVsslUnaNN-Z7F6eQiX7wfDk_rpg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NmAQ8wNhAlLHNDzwxWUpiJ3EeEVrVaW01QTvxFsWODZFoipoUVf3rOecHLRObtL0lytmKfE6-z7q77wDOUoQkGXA8qUqmKFfCpciTGY0QHKSRKXNN5el-OByKm5voZ1PHXbTZ7m1IsvpTrxW7CasG6_o4kXDocgO2OAKWzeO7uv61Utp1_LqTLVJHPPr5bSjztSlegtGKYf4WFK2wprv_X2_5DvYaakku6r1wAG90_h521wQH8W7wrNJafIDpRU4qTfFFVhcwkuT-djrLyrsJQS5L0JRIm_qodEoGyYIyOs7VvCRNFxpik-ZvSZWVrhek0JMs1SazLJY0eV8TazCzrZvw4hDG3W-jyx5tGjBQxdygpL5UrpSBcZgv3YRrR0ujkQ8mnuEsSJWJZCil4FpxV0YBejtMAsMTPAWJQOiEHcFmPs31MZAotdRApE5kEDc9R1qdOhzhcS08lvAOOK0nYtWok9smGffxSlfZrmyMKxvblY2XHTh_HvJQS3P8zfi0dW_cfKVFbLXoEJ2ZF3bga-vOtcd_muzkn6y_wHZvNOjH_e_DHx9hBxlXUBcznsJmOZvrT_BWPZZZMftcbeQnIjPuig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NNiF4gA02USjghz1tskhiJ3UeK1g1RKkqbSDeotixIRJNqyZFFX895_ygHRpIiLdEOVuRz9Z9J999H8D3BEOSDDhmqpIpypVwKeJkRkMMDtLIhLmm9HS_MxiI6-twWOuc5k21e3MlWfU0WJamrDieJOZ4qfFNWGZY18dJhUMfVuAjt5pBNl3_c7Vg3XX8StUWYSSmgX5zrfm_Kf4NTAu0-eyCtIw7va13__Fn2KwhJ-lWe-QLfNDZNmwsERHi28UTe2u-A-NuRkqu8XlaNTaS-O5mPE2L2xFBjEvQlEhbEql0Qi7iOWX0MlOzgtTqNMQW09-Qslpdz0muR2miTWrRLanrwUbWYGolnfDhK1z2fv09-U1rYQaqmBsU1JfKlTIwDvOlG3PtaGk04sTYM5wFiTKh7EgpuFbclWGAu6ATB4bHmB2JQOiYfYPVbJzpXSBhYiGDSJzQYDz1HGn563CEx7XwWMxb4DReiVTNWm7FM-6iBd-yXdkIVzayKxs9tODH05BJRdnxmnG7cXVUn948shx1GLWZ12nBz8a1S59fmmzvTdZHsDY87UX9s8H5PqwjEAuqHsc2rBbTmT6AT-q-SPPpYbmnHwGzI_du
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximation+algorithm+for+the+balanced+Max-3-Uncut+problem+using+complex+semidefinite+programming+rounding&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Wu%2C+Chenchen&rft.au=Xu%2C+Dachuan&rft.au=Du%2C+Donglei&rft.au=Xu%2C+Wenqing&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=32&rft.issue=4&rft.spage=1017&rft.epage=1035&rft_id=info:doi/10.1007%2Fs10878-015-9880-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon