Average-case complexity of the Euclidean algorithm with a fixed polynomial over a finite field

We analyse the behaviour of the Euclidean algorithm applied to pairs ( g , f ) of univariate nonconstant polynomials over a finite field $\mathbb{F}_{q}$ of q elements when the highest degree polynomial g is fixed. Considering all the elements f of fixed degree, we establish asymptotically optimal b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Combinatorics, probability & computing Ročník 31; číslo 1; s. 166 - 183
Hlavní autoři: Giménez, Nardo, Matera, Guillermo, Pérez, Mariana, Privitelli, Melina
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Cambridge University Press 01.01.2022
Témata:
ISSN:0963-5483, 1469-2163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We analyse the behaviour of the Euclidean algorithm applied to pairs ( g , f ) of univariate nonconstant polynomials over a finite field $\mathbb{F}_{q}$ of q elements when the highest degree polynomial g is fixed. Considering all the elements f of fixed degree, we establish asymptotically optimal bounds in terms of q for the number of elements f that are relatively prime with g and for the average degree of $\gcd(g,f)$ . We also exhibit asymptotically optimal bounds for the average-case complexity of the Euclidean algorithm applied to pairs ( g , f ) as above.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548321000274