An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization

We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established rec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 175; no. 3; pp. 818 - 847
Main Authors: Alves, Maicon Marques, Lima, Samara Costa
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2017
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established recently by Monteiro and Svaiter. As applications, we propose and analyze the iteration-complexity of an inexact operator splitting algorithm—which generalizes the original Spingarn’s splitting method—and of a parallel forward–backward algorithm for multi-term composite convex optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-017-1188-y