An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization

We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established rec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of optimization theory and applications Ročník 175; číslo 3; s. 818 - 847
Hlavní autoři: Alves, Maicon Marques, Lima, Samara Costa
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2017
Springer Nature B.V
Témata:
ISSN:0022-3239, 1573-2878
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient method, for which pointwise and ergodic iteration-complexity has been established recently by Monteiro and Svaiter. As applications, we propose and analyze the iteration-complexity of an inexact operator splitting algorithm—which generalizes the original Spingarn’s splitting method—and of a parallel forward–backward algorithm for multi-term composite convex optimization.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-017-1188-y