Robust monotone submodular function maximization

We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011 ), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 172; H. 1-2; S. 505 - 537
Hauptverfasser: Orlin, James B., Schulz, Andreas S., Udwani, Rajan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2018
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011 ), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to τ elements from the chosen set. For the fundamental case of τ = 1 , we give a deterministic ( 1 - 1 / e ) - 1 / Θ ( m ) approximation algorithm, where m is an input parameter and number of queries scale as O ( n m + 1 ) . In the process, we develop a deterministic ( 1 - 1 / e ) - 1 / Θ ( m ) approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010 ), we show a randomized ( 1 - 1 / e ) - ϵ approximation for constant τ and ϵ ≤ 1 Ω ~ ( τ ) , making O ( n 1 / ϵ 3 ) queries. Further, for τ ≪ k , we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
AbstractList We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to \[\tau \] elements from the chosen set. For the fundamental case of \[\tau =1\], we give a deterministic \[(1-1/e)-1/\varTheta (m)\] approximation algorithm, where m is an input parameter and number of queries scale as \[O(n^{m+1})\]. In the process, we develop a deterministic \[(1-1/e)-1/\varTheta (m)\] approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized \[(1-1/e)-\epsilon \] approximation for constant \[\tau \] and \[\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}\], making \[O(n^{1/\epsilon ^3})\] queries. Further, for \[\tau \ll \sqrt{k}\], we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011 ), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to τ elements from the chosen set. For the fundamental case of τ = 1 , we give a deterministic ( 1 - 1 / e ) - 1 / Θ ( m ) approximation algorithm, where m is an input parameter and number of queries scale as O ( n m + 1 ) . In the process, we develop a deterministic ( 1 - 1 / e ) - 1 / Θ ( m ) approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010 ), we show a randomized ( 1 - 1 / e ) - ϵ approximation for constant τ and ϵ ≤ 1 Ω ~ ( τ ) , making O ( n 1 / ϵ 3 ) queries. Further, for τ ≪ k , we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
Author Schulz, Andreas S.
Orlin, James B.
Udwani, Rajan
Author_xml – sequence: 1
  givenname: James B.
  surname: Orlin
  fullname: Orlin, James B.
  organization: M.I.T
– sequence: 2
  givenname: Andreas S.
  surname: Schulz
  fullname: Schulz, Andreas S.
  organization: M.I.T
– sequence: 3
  givenname: Rajan
  orcidid: 0000-0002-2112-4876
  surname: Udwani
  fullname: Udwani, Rajan
  email: rudwani@alum.mit.edu
  organization: M.I.T
BookMark eNp9kMFKxDAQhoOs4O7qA3greI7OJG3aHmVRV1gQRM9hmqTSZdusSQvq09u1giDoaRj4v3-Gb8Fmne8cY-cIlwiQX0UEhJwDFhylAC6O2BxTqXiqUjVjcwCR8UwhnLBFjFsAQFkUcwaPvhpin7S-8_1YmcShar0ddhSSeuhM3_guaemtaZsPOiyn7LimXXRn33PJnm9vnlZrvnm4u19db7iRqHqeoa2FEza3UjlFxmBNtkIEIxU5l5JxOaFQGVa2MkVOJVFqs8rVlS1KKuWSXUy9--BfBxd7vfVD6MaTWiDIsshEno6pfEqZ4GMMrtam6b_-7AM1O42gD3r0pEePevRBjxYjib_IfWhaCu__MmJi4pjtXlz4-elv6BO3p3qD
CitedBy_id crossref_primary_10_1016_j_ejor_2023_04_024
crossref_primary_10_1109_TMC_2020_3043000
crossref_primary_10_1049_rpg2_12779
crossref_primary_10_1287_opre_2021_2145
crossref_primary_10_1109_TRO_2022_3161765
crossref_primary_10_1145_3419755
crossref_primary_10_1109_TRO_2021_3082212
crossref_primary_10_1137_23M1569265
crossref_primary_10_1016_j_tcs_2022_09_029
crossref_primary_10_1137_22M1526952
crossref_primary_10_1109_TRO_2022_3233341
crossref_primary_10_1287_moor_2022_0320
crossref_primary_10_1287_opre_2021_2180
crossref_primary_10_3390_app15158217
crossref_primary_10_26599_TST_2023_9010026
crossref_primary_10_1287_ijoo_2019_0041
crossref_primary_10_1016_j_tcs_2024_114755
crossref_primary_10_1145_3698397
crossref_primary_10_1109_JIOT_2021_3078620
crossref_primary_10_1109_TMC_2021_3136868
Cites_doi 10.1137/080734510
10.1007/BF01588971
10.1515/9781400831050
10.1109/ICASSP.2013.6639057
10.1137/1.9781611973082.83
10.1145/285055.285059
10.1137/090779346
10.1137/1.9781611972795.92
10.1137/1.9781611973402.110
10.1109/FOCS.2011.46
10.1145/1993636.1993740
10.1145/1102351.1102385
10.1145/502090.502096
10.1016/S0167-6377(03)00062-2
10.1007/s10107-003-0396-4
10.1109/FOCS.2010.60
10.1145/1143844.1143889
10.1137/1.9781611974331.ch29
10.1287/moor.3.3.177
10.1145/1374376.1374389
10.1287/opre.1030.0065
10.1145/1127777.1127782
10.1007/978-3-642-22006-7_29
10.1137/110832318
10.1109/FOCS.2012.73
10.1006/jctb.2000.1989
10.1137/080733991
10.1145/2213977.2214076
10.1145/1281192.1281239
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018
Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018
– notice: Mathematical Programming is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10107-018-1320-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
Proquest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 537
ExternalDocumentID 10_1007_s10107_018_1320_2
GrantInformation_xml – fundername: Office of Naval Research Global
  grantid: 6929031
  funderid: http://dx.doi.org/10.13039/100007297
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c316t-51df2e2d7d36e6acc1fadb110c36aee4ace7a12651bdbc87a9aa4d5befbd89a93
IEDL.DBID RSV
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447751100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Thu Sep 25 00:52:22 EDT 2025
Sat Nov 29 03:34:00 EST 2025
Tue Nov 18 22:43:18 EST 2025
Fri Feb 21 02:32:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-51df2e2d7d36e6acc1fadb110c36aee4ace7a12651bdbc87a9aa4d5befbd89a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2112-4876
PQID 2103985274
PQPubID 25307
PageCount 33
ParticipantIDs proquest_journals_2103985274
crossref_citationtrail_10_1007_s10107_018_1320_2
crossref_primary_10_1007_s10107_018_1320_2
springer_journals_10_1007_s10107_018_1320_2
PublicationCentury 2000
PublicationDate 20181100
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 20181100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Automata, Languages and Programming, pp. 342–353. Springer (2011)
KrauseAMcMahanHBGuestrinCGuptaARobust submodular observation selectionJ. Mach. Learn. Res.20089276128011225.90107
CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
GolovinDKrauseAAdaptive submodularity: Theory and applications in active learning and stochastic optimizationJ. Artif. Intell. Res.20114242748628748071230.90141
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions–iMath. Program.197814126529450386610.1007/BF01588971
FeigeUA threshold of ln n for approximating set coverJ. ACM (JACM)199845463465210.1145/285055.285059
Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian processes. In: Proceedings of the 22nd International Conference on Machine learning, pp. 265–272. ACM (2005)
SchrijverAA combinatorial algorithm minimizing submodular functions in strongly polynomial timeJ. Comb. Theory, Ser. B2000802346355179469810.1006/jctb.2000.1989
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: STOC ’08, pp. 67–74. ACM (2008)
Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. CoRR. arXiv:1508.02157 (2015)
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS 10, pp. 575–584. IEEE (2010)
Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. In: FOCS ’12, pp. 649–658 (2012)
IwataSFleischerLFujishigeSA combinatorial strongly polynomial algorithm for minimizing submodular functionsJ. ACM (JACM)2001484761777214492910.1145/502090.502096
FeigeUMirrokniVSVondrakJMaximizing non-monotone submodular functionsSIAM J. Comput.201140411331153282531210.1137/090779346
BertsimasDSimMThe price of robustnessOper. Res.20045213553206623910.1287/opre.1030.0065
VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In SODA ’14, pages 1497–1514. SIAM, (2014)
Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: STOC ’11, pp. 783–792. ACM (2011)
Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press10.1515/9781400831050
Dobzinski, S., Vondrák, J.: From query complexity to computational complexity. In: STOC ’12, pp. 1107–1116. ACM (2012)
Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature deletion. In: Proceedings of the 23rd International Conference on Machine learning, pp. 353–360. ACM (2006)
Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS ’11, pp. 570–579. IEEE (2011)
Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.P., Smola, A.J., Song, L., Philip, S.Y., Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection among frequent subgraphs. In: SDM, pp. 1076–1087. SIAM (2009)
BertsimasDSimMRobust discrete optimization and network flowsMath. Program.2003981–34971201936710.1007/s10107-003-0396-4
Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In: SODA ’11, pp. 1098–1116. SIAM (2011)
Liu, Y., Wei, K., Kirchhoff, K., Song, Y., Bilmes, J.: Submodular feature selection for high-dimensional acoustic score spaces. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7184–7188. IEEE (2013)
NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177
Bogunovic, I., Mitrovic, S., Scarlett, J., Cevher, V.: Robust submodular maximization: a non-uniform partitioning approach. In: ICML (2017)
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 420–429. ACM (2007)
BertsimasDBrownDCaramanisCTheory and applications of robust optimizationSIAM Rev.2011533464501283408410.1137/080734510
Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing information while minimizing communication cost. In: Proceedings of the 5th International Conference On Information processing in Sensor Networks, pp. 2–10. ACM (2006)
1320_CR23
1320_CR21
M Sviridenko (1320_CR28) 2004; 32
G Calinescu (1320_CR9) 2011; 40
1320_CR8
GL Nemhauser (1320_CR26) 1978; 14
1320_CR6
D Bertsimas (1320_CR4) 2003; 98
1320_CR7
A Ben-Tal (1320_CR2) 2009
D Bertsimas (1320_CR3) 2011; 53
1320_CR1
1320_CR29
1320_CR24
J Vondrák (1320_CR31) 2013; 42
D Bertsimas (1320_CR5) 2004; 52
1320_CR11
1320_CR10
1320_CR32
D Golovin (1320_CR18) 2011; 42
1320_CR30
A Schrijver (1320_CR27) 2000; 80
S Iwata (1320_CR20) 2001; 48
GL Nemhauser (1320_CR25) 1978; 3
A Krause (1320_CR22) 2008; 9
U Feige (1320_CR12) 1998; 45
1320_CR19
1320_CR17
1320_CR16
1320_CR15
1320_CR14
U Feige (1320_CR13) 2011; 40
References_xml – reference: KrauseAMcMahanHBGuestrinCGuptaARobust submodular observation selectionJ. Mach. Learn. Res.20089276128011225.90107
– reference: GolovinDKrauseAAdaptive submodularity: Theory and applications in active learning and stochastic optimizationJ. Artif. Intell. Res.20114242748628748071230.90141
– reference: Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Automata, Languages and Programming, pp. 342–353. Springer (2011)
– reference: Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature deletion. In: Proceedings of the 23rd International Conference on Machine learning, pp. 353–360. ACM (2006)
– reference: Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: FOCS ’11, pp. 570–579. IEEE (2011)
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
– reference: Liu, Y., Wei, K., Kirchhoff, K., Song, Y., Bilmes, J.: Submodular feature selection for high-dimensional acoustic score spaces. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7184–7188. IEEE (2013)
– reference: Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. In: FOCS ’12, pp. 649–658 (2012)
– reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177
– reference: SchrijverAA combinatorial algorithm minimizing submodular functions in strongly polynomial timeJ. Comb. Theory, Ser. B2000802346355179469810.1006/jctb.2000.1989
– reference: Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: STOC ’08, pp. 67–74. ACM (2008)
– reference: Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. CoRR. arXiv:1508.02157 (2015)
– reference: FeigeUA threshold of ln n for approximating set coverJ. ACM (JACM)199845463465210.1145/285055.285059
– reference: Dobzinski, S., Vondrák, J.: From query complexity to computational complexity. In: STOC ’12, pp. 1107–1116. ACM (2012)
– reference: FeigeUMirrokniVSVondrakJMaximizing non-monotone submodular functionsSIAM J. Comput.201140411331153282531210.1137/090779346
– reference: IwataSFleischerLFujishigeSA combinatorial strongly polynomial algorithm for minimizing submodular functionsJ. ACM (JACM)2001484761777214492910.1145/502090.502096
– reference: Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.P., Smola, A.J., Song, L., Philip, S.Y., Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection among frequent subgraphs. In: SDM, pp. 1076–1087. SIAM (2009)
– reference: Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 420–429. ACM (2007)
– reference: Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements: maximizing information while minimizing communication cost. In: Proceedings of the 5th International Conference On Information processing in Sensor Networks, pp. 2–10. ACM (2006)
– reference: Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press10.1515/9781400831050
– reference: VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318
– reference: Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian processes. In: Proceedings of the 22nd International Conference on Machine learning, pp. 265–272. ACM (2005)
– reference: BertsimasDBrownDCaramanisCTheory and applications of robust optimizationSIAM Rev.2011533464501283408410.1137/080734510
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions–iMath. Program.197814126529450386610.1007/BF01588971
– reference: Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In SODA ’14, pages 1497–1514. SIAM, (2014)
– reference: BertsimasDSimMRobust discrete optimization and network flowsMath. Program.2003981–34971201936710.1007/s10107-003-0396-4
– reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS 10, pp. 575–584. IEEE (2010)
– reference: CalinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
– reference: Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In: SODA ’11, pp. 1098–1116. SIAM (2011)
– reference: Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: STOC ’11, pp. 783–792. ACM (2011)
– reference: Bogunovic, I., Mitrovic, S., Scarlett, J., Cevher, V.: Robust submodular maximization: a non-uniform partitioning approach. In: ICML (2017)
– reference: BertsimasDSimMThe price of robustnessOper. Res.20045213553206623910.1287/opre.1030.0065
– volume: 53
  start-page: 464
  issue: 3
  year: 2011
  ident: 1320_CR3
  publication-title: SIAM Rev.
  doi: 10.1137/080734510
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 1320_CR26
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume-title: Robust optimization
  year: 2009
  ident: 1320_CR2
  doi: 10.1515/9781400831050
– ident: 1320_CR24
  doi: 10.1109/ICASSP.2013.6639057
– ident: 1320_CR16
  doi: 10.1137/1.9781611973082.83
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 1320_CR12
  publication-title: J. ACM (JACM)
  doi: 10.1145/285055.285059
– volume: 40
  start-page: 1133
  issue: 4
  year: 2011
  ident: 1320_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/090779346
– ident: 1320_CR6
– ident: 1320_CR29
  doi: 10.1137/1.9781611972795.92
– ident: 1320_CR1
  doi: 10.1137/1.9781611973402.110
– ident: 1320_CR14
  doi: 10.1109/FOCS.2011.46
– ident: 1320_CR32
  doi: 10.1145/1993636.1993740
– ident: 1320_CR19
  doi: 10.1145/1102351.1102385
– volume: 48
  start-page: 761
  issue: 4
  year: 2001
  ident: 1320_CR20
  publication-title: J. ACM (JACM)
  doi: 10.1145/502090.502096
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 1320_CR28
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 98
  start-page: 49
  issue: 1–3
  year: 2003
  ident: 1320_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0396-4
– ident: 1320_CR10
  doi: 10.1109/FOCS.2010.60
– ident: 1320_CR17
  doi: 10.1145/1143844.1143889
– ident: 1320_CR7
  doi: 10.1137/1.9781611974331.ch29
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 1320_CR25
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.3.3.177
– ident: 1320_CR30
  doi: 10.1145/1374376.1374389
– volume: 52
  start-page: 35
  issue: 1
  year: 2004
  ident: 1320_CR5
  publication-title: Oper. Res.
  doi: 10.1287/opre.1030.0065
– ident: 1320_CR21
  doi: 10.1145/1127777.1127782
– ident: 1320_CR15
  doi: 10.1007/978-3-642-22006-7_29
– volume: 42
  start-page: 265
  issue: 1
  year: 2013
  ident: 1320_CR31
  publication-title: SIAM J. Comput.
  doi: 10.1137/110832318
– ident: 1320_CR8
  doi: 10.1109/FOCS.2012.73
– volume: 80
  start-page: 346
  issue: 2
  year: 2000
  ident: 1320_CR27
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.2000.1989
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 1320_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: 1320_CR11
  doi: 10.1145/2213977.2214076
– volume: 42
  start-page: 427
  year: 2011
  ident: 1320_CR18
  publication-title: J. Artif. Intell. Res.
– volume: 9
  start-page: 2761
  year: 2008
  ident: 1320_CR22
  publication-title: J. Mach. Learn. Res.
– ident: 1320_CR23
  doi: 10.1145/1281192.1281239
SSID ssj0001388
Score 2.4869187
Snippet We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011 ), of the classical cardinality constrained monotone...
We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 505
SubjectTerms Algorithms
Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Greedy algorithms
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Maximization
Numerical Analysis
Queries
Robustness
Theoretical
SummonAdditionalLinks – databaseName: ABI/INFORM Collection
  dbid: 7WY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9KAHv8XplB48KcUlWZr0JCIODzpEFOep5KswcOtcO_HPN-nSVQV38VjapE3e6_vM-z2AU00QxpZZQokZtg4KY6GMXIEPFURaBuFYlSCud6zX4_1-_OADbrk_VlnJxFJQ60y5GPkFdjlLTq0TdTl-D13XKJdd9S00lmHFKmrqOhiwl9e5JEaE86plq7MTqqzmrHQOlYcurQ_liojxT71UG5u_8qOl2ulu_veDt2DDG5zB1YxDtmHJjHZg_RsMob26n2O35rvQfszkNC8COz5zSN1BblVmpt1x1cBpQUfJYCg-B0NfwrkHz92bp-vb0PdVCBVBURFSpFNssGaaRCYSSqFUaGntAEUiYUxHKMMEwhFFUkvFmYiF6GgqTSo1j0VM9qExsu8_gMAuUlMthOLcWEK345Qz2aapMpiJtEOa0K52NVEedNz1vnhLarhkR4jEEiJxhEhwE87mQ8YzxI1FD7eqzU_8z5cn9c434bwiX337z8kOF092BGu45BcXf2lBo5hMzTGsqo9ikE9OSs77AiNL3eE
  priority: 102
  providerName: ProQuest
Title Robust monotone submodular function maximization
URI https://link.springer.com/article/10.1007/s10107-018-1320-2
https://www.proquest.com/docview/2103985274
Volume 172
WOSCitedRecordID wos000447751100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7E-Sg6elECy281ujiqKoC2l9X0J-woUrBWTij_f2TRpVVTQy8CSzSbMTOaR2fkWYN_QkBBUFl8RTjBB4dxXkWvwYZIqVBBBdAHiesnbbXF3F3fKPu6s2u1elSQLS_2h2S0stkli1uPaftHuzjEHNuNS9N7NxPyGVIjqnFYXHFSlzO-W-OyMphHml6Jo4WvOlv_1liuwVIaW3tFYF1Zhxj6tweIHwEEctSYordk6BN2hGmW5h5o4dJjcXobOcWjcxlTP-TsnM28g3_qDsllzA67PTq9Ozv3yBAVf0zDKfRaalFhiuKGRjaTWYSqNQo-vaSStbUptuQxJxEJllBZcxlI2DVM2VUbEMqabUHvC52-Bh6mhYUZKLYRFkQZxKrgKWKot4TJt0joEFSsTXcKLu1MuHpMpMLJjTYKsSRxrElKHg8ktz2Nsjd8m71byScrPLEuIK2QLhpl1HQ4reUwv_7jY9p9m78ACKQTqfrzsQi1_Gdk9mNeveT97acAsv71vwNzxabvTxdEF95G2ghNHScdR3kPaYQ-NQlPfAfnF2ik
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH6UKqgHd7FaNQe9KMFm0mSmBxFxoaULIhV6i7MFCnaxaV3-lL_ReWnSqmBvPXgMSSbJvC9vmTfvewDHynUIMWCxBaHEBCiU2sLHAh-Pu8IAhBEZk7jWaKPBWq3SfQY-01oY3FaZ6sRYUauexDXyc4I5S-aZIOqy_2Jj1yjMrqYtNMawqOqPNxOyRReVGyPfE0LubpvXZTvpKmBL1_GHtueokGiiqHJ97XMpnZArYaygdH2udZFLTblDfM8RSkhGeYnzovKEDoViJY7kS0blLxRd5uMfVaX2RPM7LmNpi1j0S9Is6rhUz4k3eZqYDYuWyU87OHVuf-VjYzN3t_bfJmgdVhOH2roa_wEbkNHdTVj5RrNojuoTbtpoCwoPPTGKhpZ53x4ykVuRcQl6CrfjWmjlEalWh7-3O0mJ6jY8zuUDdiDbNc_fBctMqvIU55IxbYBcKIWMioIXSk0oD4tuDgqpFAOZkKpjb4_nYEoHjYIPjOADFHxAcnA6uaU_ZhSZdXE-FXaQKJcomEo6B2cpXKan_xxsb_ZgR7BUbtZrQa3SqO7DMomximtNecgOByN9AIvyddiOBocx6i14mjeKvgDgs0AN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiD3-J0ah98UsqapG3SR1GH4hxjfrC3kq_CwH2wduKfb9K12xQVxMemSVrurrm73t3vAM4UQRgbYXEFptg4KJS6IrQFPgEnwggIwzIHcW3SVot1u1G76HOaltnuZUhyWtNgUZoGWX2kkvpC4RvKUyaNB2RLgM0ZvOybEZvT1Xl8mR3FiDBW9my1hkIZ1vxui8-KaW5tfgmQ5nqnsfnvN96CjcLkdC6nMrINS3qwA-sLQITm6mGG3prugtcZikmaOUZChxar20mN0hwqm7DqWD1oeen0-XuvXxRx7sFz4-bp6tYtOiu4kqAwcwOkEqyxooqEOuRSooQrYSwBSUKutc-lphzhMEBCCckojzj3VSB0IhSLeET2oTIwzz8Ax7iMKlCcS8a0YbUXJYwKL0ikxpQnPqmCV5I1lgXsuO1-8RrPAZMtaWJDmtiSJsZVOJ8tGU0xN36bXCt5FRefXxpjG-BmgfG4q3BR8mZ--8fNDv80-xRW29eNuHnXuj-CNZzz1v6bqUElG0_0MazIt6yXjk9yofwAT0Petg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+monotone+submodular+function+maximization&rft.jtitle=Mathematical+programming&rft.au=Orlin%2C+James+B.&rft.au=Schulz%2C+Andreas+S.&rft.au=Udwani%2C+Rajan&rft.date=2018-11-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=172&rft.issue=1-2&rft.spage=505&rft.epage=537&rft_id=info:doi/10.1007%2Fs10107-018-1320-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_018_1320_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon