Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization
Real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. To solve such constrained multi-objective problems effectively, in this paper, we put forward a new approach which integrates self-adaptive differential evolution algorithm with α-constra...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 16; no. 8; pp. 1353 - 1372 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.08.2012
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. To solve such constrained multi-objective problems effectively, in this paper, we put forward a new approach which integrates self-adaptive differential evolution algorithm with α-constrained-domination principle, named SADE-αCD. In SADE-αCD, the trial vector generation strategies and the DE parameters are gradually self-adjusted adaptively based on the knowledge learnt from the previous searches in generating improved solutions. Furthermore, by incorporating domination principle into α-constrained method, α-constrained-domination principle is proposed to handle constraints in multi-objective problems. The advantageous performance of SADE-αCD is validated by comparisons with non-dominated sorting genetic algorithm-II, a representative of state-of-the-art in multi-objective evolutionary algorithms, and constrained multi-objective differential evolution, over fourteen test problems and four well-known constrained multi-objective engineering design problems. The performance indicators show that SADE-αCD is an effective approach to solving constrained multi-objective problems, which is basically enabled by the integration of self-adaptive strategies and α-constrained-domination principle. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-012-0816-6 |