The “One-Fifth Rule” with Rollbacks for Self-Adjustment of the Population Size in the (1 + (λ, λ)) Genetic Algorithm

Self-adjustment of parameters can significantly improve the performance of evolutionary algorithms. A notable example is the (1 + (λ, λ)) genetic algorithm, where adaptation of the population size helps to achieve the linear running time on the OneMax problem. However, on problems which interfere wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences Jg. 55; H. 7; S. 885 - 902
Hauptverfasser: Bassin, A. O., Buzdalov, M. V., Shalyto, A. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Moscow Pleiades Publishing 01.12.2021
Springer Nature B.V
Schlagworte:
ISSN:0146-4116, 1558-108X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Self-adjustment of parameters can significantly improve the performance of evolutionary algorithms. A notable example is the (1 + (λ, λ)) genetic algorithm, where adaptation of the population size helps to achieve the linear running time on the OneMax problem. However, on problems which interfere with the assumptions behind the self-adjustment procedure, its usage can lead to the performance degradation. In particular, this is the case with the “one-fifth rule” on problems with weak fitness-distance correlation. We propose a modification of the “one-fifth rule” in order to have less negative impact on the performance in the cases where the original rule is destructive. Our modification, while still yielding a provable linear runtime on OneMax, shows better results on linear functions with random weights, as well as on random satisfiable MAX-3SAT problems.
AbstractList Self-adjustment of parameters can significantly improve the performance of evolutionary algorithms. A notable example is the (1 + (λ, λ)) genetic algorithm, where adaptation of the population size helps to achieve the linear running time on the OneMax problem. However, on problems which interfere with the assumptions behind the self-adjustment procedure, its usage can lead to the performance degradation. In particular, this is the case with the “one-fifth rule” on problems with weak fitness-distance correlation. We propose a modification of the “one-fifth rule” in order to have less negative impact on the performance in the cases where the original rule is destructive. Our modification, while still yielding a provable linear runtime on OneMax, shows better results on linear functions with random weights, as well as on random satisfiable MAX-3SAT problems.
Author Bassin, A. O.
Buzdalov, M. V.
Shalyto, A. A.
Author_xml – sequence: 1
  givenname: A. O.
  orcidid: 0000-0002-6697-6714
  surname: Bassin
  fullname: Bassin, A. O.
  email: anton.bassin@gmail.com
  organization: ITMO University
– sequence: 2
  givenname: M. V.
  orcidid: 0000-0002-7120-8824
  surname: Buzdalov
  fullname: Buzdalov, M. V.
  email: mbuzdalov@gmail.com
  organization: ITMO University
– sequence: 3
  givenname: A. A.
  orcidid: 0000-0002-2723-2077
  surname: Shalyto
  fullname: Shalyto, A. A.
  organization: ITMO University
BookMark eNp9kF1KAzEUhYNUsP4swLeALxUdTSbzEx-LaBWEiq3g2xAniU2dJjXJIPapC9GVdA8uoisxYwVB0afc5Jzv3Ny7CVraaAHALkZHBCNyPEA4yRKMsxijHMWIroE2TlMaYUTvWqDdyFGjb4BN58YIBY1mbTAbjgRczl_7WkTnSvoRvKkrsZy_wWfVXExV3bPy0UFpLByISkZdPq6dnwjtoZHQB_zaTOuKeWU0HKiZgEp_PncwPICd98UhfF_s78Oe0MKrEnarB2ND9mQbrEtWObHzdW6B2_Oz4elFdNXvXZ52r6KS4MxHiRQUk5LzkxRlNONNQQQneYkkoiyhkvCThEiSMspkzmhOkjKhAt1zHhROtsDeKndqzVMtnC_GprY6tCziLE6ynKY5Dq585Sqtcc4KWZTKfw7lLVNVgVHRLLr4tehA4h_k1KoJsy__MvGKccGrH4T9_tPf0Ac2h5Hw
CitedBy_id crossref_primary_10_1109_TEVC_2022_3191698
crossref_primary_10_1145_3564755
Cites_doi 10.1162/evco_a_00210
10.1142/7438
10.1007/978-3-030-49988-4_23
10.1109/TEVC.2017.2753538
10.1109/4235.771166
10.1109/EWDTS.2014.7027058
10.1145/2739480.2754659
10.1134/S106423071402004X
10.1126/science.220.4598.671
10.1007/s12293-019-00291-4
10.1016/j.apenergy.2014.12.020
10.1007/978-3-642-02538-9_11
10.1145/2908812.2908885
10.1016/j.eswa.2017.11.047
10.5220/0006009502810286
10.1145/3321707.3321725
10.1007/978-3-319-73441-5_36
10.5220/0008163600930100
10.1145/3071178.3071297
10.1007/978-3-319-10762-2_93
10.1109/EWDTS.2016.7807680
10.1016/j.orp.2016.09.002
10.1613/jair.2861
10.1109/CEC.2013.6557555
10.1145/3071178.3071304
10.1145/2739482.2768487
10.1016/j.asoc.2012.05.023
10.1109/EWDTS.2019.8884371
10.1109/MHS.1995.494215
10.1109/IIAI-AAI.2015.290
10.1007/978-3-642-25566-3_40
10.1145/2463372.2463480
10.1515/jaiscr-2016-0013
10.1016/j.tcs.2008.03.008
10.1007/978-3-030-29414-4
10.1016/j.swevo.2018.10.013
10.1016/S1474-6670(17)57823-4
10.1109/CEC.2018.8477977
10.1145/2739480.2754683
10.1109/EWDTS.2014.7027084
10.1134/S0005117916030097
10.1007/s00453-017-0354-9
10.1145/3319619.3322067
10.1162/106365601750190398
10.1109/ICMLA.2014.62
10.1007/0-306-48041-7_14
10.1007/11785231_49
10.1201/9781420034349
10.1109/EWDTS.2015.7493134
10.1109/TSMC.1986.289288
10.1007/978-3-319-18503-3_4
10.1145/3205455.3205553
10.1145/3377930.3390200
10.1016/j.tcs.2014.11.028
10.1162/106365600750078808
10.1145/2739480.2754684
10.1145/2464576.2480793
10.1007/978-3-030-19810-7_31
10.1007/978-3-030-19810-7_38
10.1109/4235.585892
10.1007/978-3-030-32258-8_51
10.3233/INF-1998-9302
10.1007/s11721-007-0002-0
10.1109/CEC.2017.7969505
10.1007/978-3-319-99259-4_3
10.1162/EVCO_a_00184
10.1007/11550822_53
10.1145/3377930.3390172
10.1023/A:1008202821328
10.1145/2464576.2464678
10.1145/2576768.2598350
ContentType Journal Article
Copyright Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 7, pp. 885–902. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2020, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2020, No. 4, pp. 488–508.
Copyright_xml – notice: Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 7, pp. 885–902. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2020, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2020, No. 4, pp. 488–508.
DBID AAYXX
CITATION
JQ2
DOI 10.3103/S0146411621070208
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 902
ExternalDocumentID 10_3103_S0146411621070208
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
Z7R
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-4fe813cdd950686ddd953ed37c0f08a48f3d943f35a8af7a8734c48e0bdd3d9d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000749622200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0146-4116
IngestDate Wed Sep 17 23:56:07 EDT 2025
Sat Nov 29 05:52:10 EST 2025
Tue Nov 18 22:27:59 EST 2025
Fri Feb 21 02:46:09 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords parameter adaptation
MAX-3SAT
linear functions
1 + (λ
λ)) GA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4fe813cdd950686ddd953ed37c0f08a48f3d943f35a8af7a8734c48e0bdd3d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6697-6714
0000-0002-2723-2077
0000-0002-7120-8824
PQID 2624678571
PQPubID 2043879
PageCount 18
ParticipantIDs proquest_journals_2624678571
crossref_citationtrail_10_3103_S0146411621070208
crossref_primary_10_3103_S0146411621070208
springer_journals_10_3103_S0146411621070208
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Mitchell, D., Selman, B., and Levesque, H., Hard and easy distributions of SAT problems, Proc. AAAI Conference on Artificial Intelligence, 1992, pp. 459–465.
SuttonA.M.NeumannF.Parallel Problem Solving from Nature – PPSN XIII. PPSN 20142014ChamSpringer10.1007/978-3-319-10762-2_93
FogelL.G.Autonomous automata¸Ind. Res.196241419
DorigoM.GambardellaL.M.Ant colony system: A cooperative learning approach to the traveling salesman problemIEEE Trans. Evol. Comput.19971536610.1109/4235.585892
Red’koV.G.MosalovO.P.ProkhorovD.V.Artificial Neural Networks: Biological Inspirations – ICANN 2005200510.1007/11550822_53
Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Extended finite-state machine inference with parallel ant colony based algorithms, Proc. Student Workshop on Bioinspired Optimization Methods and Their Applications, BIOMA 2014, Ljubljana,2014, 2014, pp. 117–126.
DoerrB.DoerrC.EbelF.From black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
PelikanM.GoldbergD.E.Cantú-PazE.Linkage problem, distribution estimation, and Bayesian networksEvol. Comput.2000831134010.1162/106365600750078808
WhitleyL.D.ChicanoF.GoldmanB.W.Gray box optimization for Mk landscapes (NK landscapes and MAX-kSAT)Evol. Comput.20162449151910.1162/EVCO_a_00184
LiaoT.W.EgbeluP.J.ChangP.C.Two hybrid differential evolution algorithms for optimal inbound and outbound truck sequencing in cross docking operationsAppl. Soft Comput.2012123683369710.1016/j.asoc.2012.05.023
López-IbáñezM.Dubois-LacosteJ.CáceresL.P.BirattariM.StützleT.The irace package: Iterated racing for automatic algorithm configurationOper. Res. Perspect.201634358357917510.1016/j.orp.2016.09.002
B. Doerr, F. Neumann, and A. M. Sutton, Improved runtime bounds for the (1+1) EA on random 3-CNF formulas based on fitness-distance correlation, Proc. 2015 Ann. Conf. on Genetic and Evolutionary Computation, Madrid, 2015, Silva, S., Ed., New York: Association for Computing Machinery, 2015, pp. 1415–1422.  https://doi.org/10.1145/2739480.2754659
Doerr, B. and Doerr, C., Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings, Proc. 2015 Ann. Conf. Genetic and Evolutionary Computation, Madrid, 2015, Silva, S., Ed., New York: Association for Computing Machinery, 2015, pp. 1335–1342.  https://doi.org/10.1145/2739480.2754684
Semenkina, M. and Semenkin, E., Memetic self-configuring genetic programming for solving machine learning problems, IIAI 4th Int. Congress on Advanced Applied Informatics, Okayama, Japan, 2015, IEEE, 2015, pp. 599–604.  https://doi.org/10.1109/IIAI-AAI.2015.290
GlotićA.ZamudaA.Short-term combined economic and emission hydrothermal optimization by surrogate differential evolutionAppl. Energy2015141425610.1016/j.apenergy.2014.12.020
El-Khatib, S., Skobtsov, Yu., Rodzin, S., and Potryasaev, S., Theoretical and experimental evaluation of PSO-K-Means algorithm for MRI images segmentation using drift theorem, in Artificial Intelligence Methods in Intelligent Algorithms. CSOC 2019, Silhavy, R., Ed., Advances in Intelligent Systems and Computing, vol. 985, Cham: Springer, 2019, pp. 316–323.  https://doi.org/10.1007/978-3-030-19810-7_31
Doerr, B. and Doerr, C., A tight runtime analysis of the (1 + (λ, λ)) genetic algorithm on OneMax, Proc. 2015 Ann. Conf. on Genetic and Evolutionary Computation, Madrid, 2015, New York: Association for Computing Machinery, 2015, pp. 1423–1430.  https://doi.org/10.1145/2739480.2754683
Buzdalov, M. and Doerr, B., Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3‑CNF formulas, Proc. Genetic and Evolutionary Computation Conference, Berlin, 2017, New York: Association for Computing Machinery, 2017, pp. 1343–1350.  https://doi.org/10.1145/3071178.3071297
Bäck, T., Fogel, D.B., and Michalewicz, Z., Evolutionary Computation 1: Basic Algorithms and Operators, Inst. of Physics Publishing, 2000.
Antipov, D., Buzdalov, M., and Doerr, B., Fast mutation in crossover-based algorithms, Proc. 2020 Genetic and Evolutionary Computation Conference, Cancún, Mexico, 2020, New York: Association for Computing Machinery, 2020, pp. 1268–1276.  https://doi.org/10.1145/3377930.3390172
AntamoshkinA.N.SaraevV.N.SemenkinE.S.Optimization of unimodal monotone pseudoboolean functionsKybernetika19902643244210796800707.90074
GareyM.R.JohnsonD.S.Computers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman & Co.0411.68039
EibenÁ.E.HinterdingR.MichalewiczZ.Parameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166
Semenkina, M., Akhmedova, S., Brester, C., and Semenkin, E., Choice of spacecraft control contour variant with self-configuring stochastic algorithms of multi-criteria optimization, Proc. 13th Int. Conf. on Informatics Control, Automation and Robotics, Lisbon, 2016, Gusikhin, O., Peaucelle, D., and Madani, K., Eds., New York: Association for Computing Machinery, 2016, pp. 281–286.  https://doi.org/10.5220/0006009502810286
KozaJ.R.Genetic Programming: On the Programming of Computers by Means of Natural Selection1992Cambridge, Mass.MIT Press0850.68161
HansenN.OstermeierA.Completely derandomized self-adaptation in evolution strategiesEvol. Comput.2001915919510.1162/106365601750190398
Pinto, E.C. and Doerr, C., Towards a more practice-aware runtime analysis of evolutionary algorithms, 2018. arXiv:1812.00493 [cs.NE]
Kuliev, E.V., Dukkardt, A.N., Kureychik, V.V., and Legebokov, A.A., Neighborhood research approach in swarm intelligence for solving the optimization problems, Proc. IEEE East-West Design & Test Symp., Kiev, 2014, IEEE, 2014, pp. 1–4.  https://doi.org/10.1109/EWDTS.2014.7027084
EremeevA.V.Mathematical Optimization Theory and Operations Research. MOTOR 20202020ChamSpringer10.1007/978-3-030-49988-4_23
StornR.PriceK.Differential evolution – A simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.199711341359147955310.1023/A:10082028213280888.90135
Semenkina, M., Parallel version of self-configuring genetic algorithm application in spacecra. control system design, Proc. 15th Ann. Conf. Companion on Genetic and Evolutionary Computation, Amsterdam, 2013, Blum, C., Ed., New York: Association for Computing Machinery, 2013, pp. 1751–1752. https://doi.org/10.1145/2464576.2480793
Red’koV.TsoyYu.Artificial Intelligence and Soft Computing – ICAISC 20062006BerlinSpringer10.1007/11785231_49
Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Combining exact and metaheuristic techniques for learning extended finite state machines from test scenarios and temporal properties, 13th Int. Conf. on Machine Learning and Applications, Detroit, 2014, IEEE, 2014, pp. 350–355.  https://doi.org/10.1109/ICMLA.2014.62
Bishop, J.M., Stochastic searching networks, First IEEE Int. Conf. on Artificial Neural Networks (Conf. Publ. No. 313), London,1989, IET, 1989, pp. 329–331.
Buzhinsky, I., Ulyantsev, V., Tsarev, F., and Shalyto, A., Search-based construction of finite-state machines with real-valued actions: New representation model, Proc. 15th Ann. Conf. Companion on Genetic and Evolutionary Computation, Amsterdam, 2013, Blum, C., Ed., New York: Association for Computing Machinery, 2013, pp. 199–200.  https://doi.org/10.1145/2464576.2464678
LukeS.Essentials of Metaheuristics.2009
CorusD.DangD.-C.EremeevA.V.LehreP.K.Level-based analysis of genetic algorithms and other search processesIEEE Trans. Evol. Comput.20182270771910.1109/TEVC.2017.2753538
DoerrB.DoerrC.Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100
BuzhinskyI.P.UlyantsevV.I.ChivilikhinD.S.ShalytoA.A.Inducing finite state machines from training samples using ant colony optimizationJ. Comput. Syst. Sci. Int.20145325626610.1134/S106423071402004X1308.93165
AugerA.DoerrB.Theory of Randomized Search Heuristics: Foundations and Recent Developments2011River Edge, N.J.World Scientific Publishing10.1142/7438
GrefenstetteJ.J.Optimization of control parameters for genetic algorithmsIEEE Trans. Syst., Man, Cybern.19861612212810.1109/TSMC.1986.289288
PintoE.C.DoerrC.Parallel Problem Solving from Nature – PPSN XV. PPSN 20182018ChamSpringer10.1007/978-3-319-99259-4_3
Kuliev, E.V., Kureichik, V.Vl., and Kursitys, I.O., Decision making in VLSI components placement problem based on grey wolf optimization, Proc. IEEE East-West Design & Test Symp. (EWDTS), Batumi, Georgia, 2019, IEEE, 2019, pp. 1–4.  https://doi.org/10.1109/EWDTS.2019.8884371
ChivilikhinD.S.UlyantsevV.I.ShalytoA.A.Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulasAutom. Remote Control201677473484365665510.1134/S00051179160300971348.93155
Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., and Zamuda, A., Distance based parameter adaptation for success-history based differential evolution, Swarm and Evolutionary Computation, vol. 50, 2019. https://doi.org/10.1016/j.swevo.2018.10.013
Bassin, A. and Buzdalov, M., The 1/5-th rule with rollbacks: On self-adjustment of the population size in the (1 + (λ, λ)) GA, Proc. Genetic and Evolutionary Computation Conference Companion, Prague, 2019, López-Ibáñez, M., Ed., New York: Association for Computing Machinery, 2019, pp. 277–278.  https://doi.org/10.1145/3319619.3322067
El-Khatib, S., Skobtsov, Yu., and Rodzin, S., Improved particle swarm medical image segmentation algorithm for decision making, Intelligent Distributed Computing XIII. IDC 2019, Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., and Ivanovic, M., Eds., Studies in Computational Intelligence, vol. 868, Cham: Springer, 2019, pp. 437–442.  https://doi.org/10.1007/978-3-030-32258-8_51
SchwefelH.-P.Binäre Optimierung durch somatische Mutation, Tech.1975
Wegener, I., Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions, in Evolutionary Optimization, Sarker, R., Mohammadian, M., and Yao, X., Eds.,
S. Kirkpatrick (7414_CR9) 1983; 220
T.W. Liao (7414_CR34) 2012; 12
F. Hutter (7414_CR52) 2009; 36
7414_CR25
7414_CR69
7414_CR26
7414_CR27
P.A. Borisovsky (7414_CR62) 2008; 403
7414_CR28
A.N. Antamoshkin (7414_CR59) 1990; 26
M. Dorigo (7414_CR7) 1997; 1
A.V. Eremeev (7414_CR65) 2018; 26
A.V. Eremeev (7414_CR29) 2017
7414_CR60
7414_CR61
R. Storn (7414_CR11) 1997; 11
R. Poli (7414_CR8) 2007; 1
7414_CR20
7414_CR21
7414_CR23
7414_CR67
(7414_CR55) 2020
M. Pelikan (7414_CR12) 2000; 8
J.J. Grefenstette (7414_CR37) 1986; 16
J.R. Koza (7414_CR5) 1992
Á.E. Eiben (7414_CR39) 1999; 3
S. Luke (7414_CR14) 2009
D.S. Chivilikhin (7414_CR22) 2016; 77
7414_CR35
M. López-Ibáñez (7414_CR50) 2016; 3
7414_CR36
N. Hansen (7414_CR45) 2001; 9
A.M. Sutton (7414_CR79) 2014
7414_CR71
7414_CR72
7414_CR74
7414_CR31
7414_CR75
7414_CR76
I. Rechenberg (7414_CR2) 1973
7414_CR78
J.H. Holland (7414_CR1) 1975
E.C. Pinto (7414_CR83) 2018
L.G. Fogel (7414_CR4) 1962; 4
I.P. Buzhinsky (7414_CR24) 2014; 53
7414_CR70
D. Corus (7414_CR63) 2018; 22
A.V. Eremeev (7414_CR64) 2020
7414_CR46
7414_CR47
M.R. Garey (7414_CR77) 1979
7414_CR48
F. Hutter (7414_CR51) 2011
7414_CR82
E. Ridge (7414_CR49) 2010
7414_CR40
7414_CR84
7414_CR41
7414_CR42
A.V. Eremeev (7414_CR30) 2020; 12
7414_CR43
L.D. Whitley (7414_CR32) 2016; 24
A. Glotić (7414_CR33) 2015; 141
7414_CR80
7414_CR81
A. Antamoshkin (7414_CR58) 1998; 9
7414_CR6
V.G. Red’ko (7414_CR57) 2005
7414_CR13
B. Doerr (7414_CR66) 2015; 567
A.H. Gandomi (7414_CR73) 2018; 96
7414_CR15
7414_CR16
7414_CR17
7414_CR18
7414_CR19
B. Doerr (7414_CR68) 2018; 80
H.-P. Schwefel (7414_CR3) 1975
V. Red’ko (7414_CR56) 2006
A. Auger (7414_CR54) 2011
H. Mühlenbein (7414_CR38) 1992
7414_CR53
7414_CR10
V. Stanovov (7414_CR44) 2016; 6
References_xml – reference: Gladkov, L.A., Gladkova, N.V., and Leiba, S.N., Electronic computing equipment schemes elements placement based on hybrid intelligence approach, Intelligent Systems in Cybernetics and Automation Theory. CSOC 2015, Silhavy, R., Senkerik, R., Oplatkova, Z., Prokopova, Z., and Silhavy, P., Eds., Advances in Intelligent Systems and Computing, vol. 348, Cham: Springer, 2015, pp. 35–44.  https://doi.org/10.1007/978-3-319-18503-3_4
– reference: El-Khatib, S., Skobtsov, Yu., and Rodzin, S., Improved particle swarm medical image segmentation algorithm for decision making, Intelligent Distributed Computing XIII. IDC 2019, Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., and Ivanovic, M., Eds., Studies in Computational Intelligence, vol. 868, Cham: Springer, 2019, pp. 437–442.  https://doi.org/10.1007/978-3-030-32258-8_51
– reference: EibenÁ.E.HinterdingR.MichalewiczZ.Parameter control in evolutionary algorithmsIEEE Trans. Evol. Comput.1999312414110.1109/4235.771166
– reference: StornR.PriceK.Differential evolution – A simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.199711341359147955310.1023/A:10082028213280888.90135
– reference: BorisovskyP.A.EremeevA.V.Comparing evolutionary algorithms to the (1+1)-EATheor. Comput. Sci.20084033341243562910.1016/j.tcs.2008.03.0081155.68073
– reference: Doerr, B. and Krejca, M.S., Significance-based estimation-of-distribution algorithms, in Proc. Genetic and Evolutionary Computation Conf., Kyoto, 2018, Aguirre, H., Ed., New York: Association for Computing Machinery, 2018, pp. 1483–1490.  https://doi.org/10.1145/3205455.3205553
– reference: Fonseca, C.M. and Fleming, P.J., Nonlinear system identification with multiobjective genetic algorithm, IFAC Proc. Vol., 1996, vol. 29, no. 1, pp. 1169–1174.  https://doi.org/10.1016/S1474-6670(17)57823-4
– reference: RidgeE.KudenkoD.Experimental Methods for the Analysis of Optimization Algorithms2010BerlinSpringer10.1007/978-3-642-02538-9_111206.68380
– reference: KozaJ.R.Genetic Programming: On the Programming of Computers by Means of Natural Selection1992Cambridge, Mass.MIT Press0850.68161
– reference: Kureichik, V., Kureichik, V., Jr., and Zaruba, D.V., Combined approach to place electronic computing equipment circuit elements, Proc. IEEE East-West Design & Test Symp. (EWDTS), Batumi, Georgia, 2015, IEEE, 2015, pp. 1–5.  https://doi.org/10.1109/EWDTS.2015.7493134
– reference: WhitleyL.D.ChicanoF.GoldmanB.W.Gray box optimization for Mk landscapes (NK landscapes and MAX-kSAT)Evol. Comput.20162449151910.1162/EVCO_a_00184
– reference: Feoktistov, V., Pietravalle, S., and Heslot, N., Optimal experimental design of field trials using differential evolution, IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 2017, IEEE, 2017, pp. 1690–1696.  https://doi.org/10.1109/CEC.2017.7969505
– reference: Mironovich, V. and Buzdalov, M., Hard test generation for maximum flow algorithms with the fast crossover-based evolutionary algorithm, Proc. Companion Publication of the 2015 Ann. Conf. on Genetic and Evolutionary Computation, Madrid, 2015, Silva, S. Ed., New York: Association for Computing Machinery, 2015, pp. 1229–1232.  https://doi.org/10.1145/2739482.2768487
– reference: Stanovov, V., Akhmedova, S., Semenkin, E., and Semenkina, M., Generalized Lehmer mean for success history based adaptive differential evolution, IJCCI 2019—Proc. 11th Int. Joint Conf. on Computational Intelligence, Vienna, 2019, 2019, pp. 93–100.  https://doi.org/10.5220/0008163600930100
– reference: StanovovV.SemenkinE.SemenkinaO.Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced classification with adaptive instance selectionJ. Artif. Intell. Soft Comput. Res.2016617318810.1515/jaiscr-2016-0013
– reference: Doerr, B. and Doerr, C., A tight runtime analysis of the (1 + (λ, λ)) genetic algorithm on OneMax, Proc. 2015 Ann. Conf. on Genetic and Evolutionary Computation, Madrid, 2015, New York: Association for Computing Machinery, 2015, pp. 1423–1430.  https://doi.org/10.1145/2739480.2754683
– reference: SuttonA.M.NeumannF.Parallel Problem Solving from Nature – PPSN XIII. PPSN 20142014ChamSpringer10.1007/978-3-319-10762-2_93
– reference: HansenN.OstermeierA.Completely derandomized self-adaptation in evolution strategiesEvol. Comput.2001915919510.1162/106365601750190398
– reference: EremeevA.V.On proportions of fit individuals in population of mutation-based evolutionary algorithm with tournament selectionEvol. Comput.20182626929710.1162/evco_a_00210
– reference: CorusD.DangD.-C.EremeevA.V.LehreP.K.Level-based analysis of genetic algorithms and other search processesIEEE Trans. Evol. Comput.20182270771910.1109/TEVC.2017.2753538
– reference: EremeevA.V.Mathematical Optimization Theory and Operations Research. MOTOR 20202020ChamSpringer10.1007/978-3-030-49988-4_23
– reference: Doerr, B., Doerr, C., and Ebel, F., Lessons from the black-box: Fast crossover-based genetic algorithms, Proc. 15th Ann. Conf. Genetic and Evolutionary Computation Conference, Amsterdam, 2013, Blum, C., Ed., New York: Association for Computing Machinery, 2013, pp. 781–788.  https://doi.org/10.1145/2463372.2463480
– reference: KirkpatrickS.GelaC.D.VecchiM.P.Optimization by simulated annealingScience198322067168070248510.1126/science.220.4598.6711225.90162
– reference: DoerrB.DoerrC.EbelF.From black-box complexity to designing new genetic algorithmsTheor. Comput. Sci.201556787104329562610.1016/j.tcs.2014.11.0281314.68290
– reference: Orlov, A., Kureichik, V., Glushchenko, A., and Kureichik, V., Jr., Hybrid genetic algorithm for cutting stock and packaging problems, in IEEE East-West Design & Test Symp. (EWDTS), Yerevan, 2016, IEEE, 2016, pp. 1–4. https://doi.org/10.1109/EWDTS.2016.7807680
– reference: Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Combining exact and metaheuristic techniques for learning extended finite state machines from test scenarios and temporal properties, 13th Int. Conf. on Machine Learning and Applications, Detroit, 2014, IEEE, 2014, pp. 350–355.  https://doi.org/10.1109/ICMLA.2014.62
– reference: Eberhart, R. and Kennedy, J., A new optimizer using particle swarm theory, in MHS’95. Proc. Sixth Int. Symp. on Micro Machine and Human Science, Nagoya, Japan, 1995, IEEE, 1995, pp. 39–43.  https://doi.org/10.1109/MHS.1995.494215
– reference: Kuliev, E.V., Dukkardt, A.N., Kureychik, V.V., and Legebokov, A.A., Neighborhood research approach in swarm intelligence for solving the optimization problems, Proc. IEEE East-West Design & Test Symp., Kiev, 2014, IEEE, 2014, pp. 1–4.  https://doi.org/10.1109/EWDTS.2014.7027084
– reference: HutterF.Hoos, H.H., and Leyton-Brown, K., and Stützle, T., ParamILS: An automatic algorithm configuration frameworkJ. Artif. Intell. Res.20093626730610.1613/jair.2861
– reference: SchwefelH.-P.Binäre Optimierung durch somatische Mutation, Tech.1975
– reference: DoerrB.DoerrC.Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic algorithmAlgorithmica20188016581709377901410.1007/s00453-017-0354-91391.68100
– reference: HollandJ.H.Adaptation in Natural and Artificial Systems1975Ann Arbor, Mich.Univ. of Michigan
– reference: López-IbáñezM.Dubois-LacosteJ.CáceresL.P.BirattariM.StützleT.The irace package: Iterated racing for automatic algorithm configurationOper. Res. Perspect.201634358357917510.1016/j.orp.2016.09.002
– reference: Chivilikhin, D., Ulyantsev, V., and Shalyto, A., Extended finite-state machine inference with parallel ant colony based algorithms, Proc. Student Workshop on Bioinspired Optimization Methods and Their Applications, BIOMA 2014, Ljubljana,2014, 2014, pp. 117–126.
– reference: GrefenstetteJ.J.Optimization of control parameters for genetic algorithmsIEEE Trans. Syst., Man, Cybern.19861612212810.1109/TSMC.1986.289288
– reference: Tanabe, R. and Fukunaga, A., Success-history based parameter adaptation for differential evolution, IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, IEEE, 2013, pp. 71–78.  https://doi.org/10.1109/CEC.2013.6557555
– reference: DoerrB.NeumannF.Theory of Evolutionary Computation: Recent Developments in Discrete Optimization2020ChamSpringer10.1007/978-3-030-29414-41429.68004
– reference: Bassin, A. and Buzdalov, M., The 1/5-th rule with rollbacks: On self-adjustment of the population size in the (1 + (λ, λ)) GA, Proc. Genetic and Evolutionary Computation Conference Companion, Prague, 2019, López-Ibáñez, M., Ed., New York: Association for Computing Machinery, 2019, pp. 277–278.  https://doi.org/10.1145/3319619.3322067
– reference: Rodzin, S. and Rodzina, L., Theory of bionic optimization and its application to evolutionary synthesis of digital devices, Proc. of IEEE East-West Design & Test Symp. (EWDTS), Kiev, 2014, IEEE, 2014, pp. 1–5.  https://doi.org/10.1109/EWDTS.2014.7027058
– reference: GlotićA.ZamudaA.Short-term combined economic and emission hydrothermal optimization by surrogate differential evolutionAppl. Energy2015141425610.1016/j.apenergy.2014.12.020
– reference: Doerr, B. and Doerr, C., Optimal parameter choices through self-adjustment: Applying the 1/5-th rule in discrete settings, Proc. 2015 Ann. Conf. Genetic and Evolutionary Computation, Madrid, 2015, Silva, S., Ed., New York: Association for Computing Machinery, 2015, pp. 1335–1342.  https://doi.org/10.1145/2739480.2754684
– reference: Antipov, D., Buzdalov, M., and Doerr, B., Fast mutation in crossover-based algorithms, Proc. 2020 Genetic and Evolutionary Computation Conference, Cancún, Mexico, 2020, New York: Association for Computing Machinery, 2020, pp. 1268–1276.  https://doi.org/10.1145/3377930.3390172
– reference: GareyM.R.JohnsonD.S.Computers and Intractability: A Guide to the Theory of NP-Completeness1979New YorkW. H. Freeman & Co.0411.68039
– reference: Red’koV.G.MosalovO.P.ProkhorovD.V.Artificial Neural Networks: Biological Inspirations – ICANN 2005200510.1007/11550822_53
– reference: B. Doerr, F. Neumann, and A. M. Sutton, Improved runtime bounds for the (1+1) EA on random 3-CNF formulas based on fitness-distance correlation, Proc. 2015 Ann. Conf. on Genetic and Evolutionary Computation, Madrid, 2015, Silva, S., Ed., New York: Association for Computing Machinery, 2015, pp. 1415–1422.  https://doi.org/10.1145/2739480.2754659
– reference: AntamoshkinA.N.SaraevV.N.SemenkinE.S.Optimization of unimodal monotone pseudoboolean functionsKybernetika19902643244210796800707.90074
– reference: Semenkina, M., Akhmedova, S., Brester, C., and Semenkin, E., Choice of spacecraft control contour variant with self-configuring stochastic algorithms of multi-criteria optimization, Proc. 13th Int. Conf. on Informatics Control, Automation and Robotics, Lisbon, 2016, Gusikhin, O., Peaucelle, D., and Madani, K., Eds., New York: Association for Computing Machinery, 2016, pp. 281–286.  https://doi.org/10.5220/0006009502810286
– reference: Mitchell, D., Selman, B., and Levesque, H., Hard and easy distributions of SAT problems, Proc. AAAI Conference on Artificial Intelligence, 1992, pp. 459–465.
– reference: PelikanM.GoldbergD.E.Cantú-PazE.Linkage problem, distribution estimation, and Bayesian networksEvol. Comput.2000831134010.1162/106365600750078808
– reference: RechenbergI.Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution1973StuttgartFromman-Holzboorg Verlag
– reference: Sanches, D., Whitley, D., and Tinós, R., Improving an exact solver for the traveling salesman problem using partition crossover, Proc. Genetic and Evolutionary Computation Conference, Berlin, 2017, New York: Association for Computing Machinery, 2017, pp. 337–344.  https://doi.org/10.1145/3071178.3071304
– reference: LukeS.Essentials of Metaheuristics.2009
– reference: GandomiA.H.GoldmanB.W.Parameter-less population pyramid for large-scale tower optimizationExpert Syst. Appl.20189617518410.1016/j.eswa.2017.11.047
– reference: Doerr, B., Optimal parameter settings for the (1 + (λ, λ)) genetic algorithm, Proc. Genetic and Evolutionary Computation Conference, Denver, Colo., 2016, Friedrich, T., Ed., New York: Association for Computing Machinery, 2016, pp. 1107–1114.  https://doi.org/10.1145/2908812.2908885
– reference: DorigoM.GambardellaL.M.Ant colony system: A cooperative learning approach to the traveling salesman problemIEEE Trans. Evol. Comput.19971536610.1109/4235.585892
– reference: LiaoT.W.EgbeluP.J.ChangP.C.Two hybrid differential evolution algorithms for optimal inbound and outbound truck sequencing in cross docking operationsAppl. Soft Comput.2012123683369710.1016/j.asoc.2012.05.023
– reference: Kuliev, E.V., Kureichik, V.Vl., and Kursitys, I.O., Decision making in VLSI components placement problem based on grey wolf optimization, Proc. IEEE East-West Design & Test Symp. (EWDTS), Batumi, Georgia, 2019, IEEE, 2019, pp. 1–4.  https://doi.org/10.1109/EWDTS.2019.8884371
– reference: EremeevA.V.KovalenkoYu.V.Large-Scale Scientific Computing. LSSC 20172017ChamSpringer10.1007/978-3-319-73441-5_36
– reference: Dang, N. and Doerr, C., Hyper-parameter tuning for the (1 + (λ, λ)) GA, Proc. of Genetic and Evolutionary Computation Conference, Prague, 2019, López-Ibáñez, M., Ed., New York: Association for Computing Machinery, 2019, pp. 889–897.  https://doi.org/10.1145/3321707.3321725
– reference: El-Khatib, S., Skobtsov, Yu., Rodzin, S., and Potryasaev, S., Theoretical and experimental evaluation of PSO-K-Means algorithm for MRI images segmentation using drift theorem, in Artificial Intelligence Methods in Intelligent Algorithms. CSOC 2019, Silhavy, R., Ed., Advances in Intelligent Systems and Computing, vol. 985, Cham: Springer, 2019, pp. 316–323.  https://doi.org/10.1007/978-3-030-19810-7_31
– reference: PintoE.C.DoerrC.Parallel Problem Solving from Nature – PPSN XV. PPSN 20182018ChamSpringer10.1007/978-3-319-99259-4_3
– reference: FogelL.G.Autonomous automata¸Ind. Res.196241419
– reference: Hevia Fajardo, M.A. and Sudholt, D., On the choice of the parameter control mechanism in the (1 + (λ, λ)) genetic algorithm, Proc. Genetic and Evolutionary Computation Conference, Cancún, Mexico, 2020, New York: Association for Computing Machinery, 2020, pp. 832–840.  https://doi.org/10.1145/3377930.3390200
– reference: Red’koV.TsoyYu.Artificial Intelligence and Soft Computing – ICAISC 20062006BerlinSpringer10.1007/11785231_49
– reference: Goldman, B.W. and Punch, W.F., Parameter-less population pyramid, Proc. 2014 Ann. Conf. on Genetic and Evolutionary Computation, Vancouver, 2014, Igel, C., Ed., New York: Association for Computing Machinery, 2014, pp. 785–792.  https://doi.org/10.1145/2576768.2598350
– reference: Wegener, I., Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions, in Evolutionary Optimization, Sarker, R., Mohammadian, M., and Yao, X., Eds., International Series in Operations Research & Management Science, vol. 48, Boston: Springer, 2003, pp. 349–369.  https://doi.org/10.1007/0-306-48041-7_14
– reference: Bäck, T., Fogel, D.B., and Michalewicz, Z., Evolutionary Computation 1: Basic Algorithms and Operators, Inst. of Physics Publishing, 2000.
– reference: Stanovov, V., Akhmedova, S., and Semenkin, E., LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems, IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, 2018, IEEE, 2018, pp. 1–8.  https://doi.org/10.1109/CEC.2018.8477977
– reference: AntamoshkinA.SemenkinE.Local search efficiency when optimizing unimodal pseudoboolean functionsInformatica19989279296165911510.3233/INF-1998-93020918.68012
– reference: Semenkina, M., Parallel version of self-configuring genetic algorithm application in spacecra. control system design, Proc. 15th Ann. Conf. Companion on Genetic and Evolutionary Computation, Amsterdam, 2013, Blum, C., Ed., New York: Association for Computing Machinery, 2013, pp. 1751–1752. https://doi.org/10.1145/2464576.2480793
– reference: Semenkina, M. and Semenkin, E., Memetic self-configuring genetic programming for solving machine learning problems, IIAI 4th Int. Congress on Advanced Applied Informatics, Okayama, Japan, 2015, IEEE, 2015, pp. 599–604.  https://doi.org/10.1109/IIAI-AAI.2015.290
– reference: Buzdalov, M. and Doerr, B., Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3‑CNF formulas, Proc. Genetic and Evolutionary Computation Conference, Berlin, 2017, New York: Association for Computing Machinery, 2017, pp. 1343–1350.  https://doi.org/10.1145/3071178.3071297
– reference: HutterF.HoosH.H.Leyton-BrownK.Learning and Intelligent Optimization. LION 20112011BerlinSpringer10.1007/978-3-642-25566-3_40
– reference: Gladkov, L.A., Gladkova, N.V., and Gromov, S.A., Hybrid models of solving optimization tasks on the basis of integrating evolutionary design and multiagent technologies, Artificial Intelligence Methods in Intelligent Algorithms. CSOC 2019, Silhavy, R., Ed., Advances in Intelligent Systems and Computing, vol. 985, Cham: Springer, 2019, pp. 381–391.  https://doi.org/10.1007/978-3-030-19810-7_38
– reference: BuzhinskyI.P.UlyantsevV.I.ChivilikhinD.S.ShalytoA.A.Inducing finite state machines from training samples using ant colony optimizationJ. Comput. Syst. Sci. Int.20145325626610.1134/S106423071402004X1308.93165
– reference: PoliR.KennedyJ.BlackwellT.Particle swarm optimization: An overviewSwarm Intell.20071335710.1007/s11721-007-0002-0
– reference: Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., and Zamuda, A., Distance based parameter adaptation for success-history based differential evolution, Swarm and Evolutionary Computation, vol. 50, 2019. https://doi.org/10.1016/j.swevo.2018.10.013
– reference: MühlenbeinH.Parallel Problem Solving from Nature – PPSN II1992
– reference: Buzhinsky, I., Ulyantsev, V., Tsarev, F., and Shalyto, A., Search-based construction of finite-state machines with real-valued actions: New representation model, Proc. 15th Ann. Conf. Companion on Genetic and Evolutionary Computation, Amsterdam, 2013, Blum, C., Ed., New York: Association for Computing Machinery, 2013, pp. 199–200.  https://doi.org/10.1145/2464576.2464678
– reference: EremeevA.V.KovalenkoYu.V.A memetic algorithm with optimal recombination for the asymmetric travelling salesman problemMemetic Comput.202012233610.1007/s12293-019-00291-4
– reference: AugerA.DoerrB.Theory of Randomized Search Heuristics: Foundations and Recent Developments2011River Edge, N.J.World Scientific Publishing10.1142/7438
– reference: Bishop, J.M., Stochastic searching networks, First IEEE Int. Conf. on Artificial Neural Networks (Conf. Publ. No. 313), London,1989, IET, 1989, pp. 329–331.
– reference: Pinto, E.C. and Doerr, C., Towards a more practice-aware runtime analysis of evolutionary algorithms, 2018. arXiv:1812.00493 [cs.NE]
– reference: ChivilikhinD.S.UlyantsevV.I.ShalytoA.A.Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulasAutom. Remote Control201677473484365665510.1134/S00051179160300971348.93155
– volume: 26
  start-page: 269
  year: 2018
  ident: 7414_CR65
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00210
– volume-title: Theory of Randomized Search Heuristics: Foundations and Recent Developments
  year: 2011
  ident: 7414_CR54
  doi: 10.1142/7438
– volume-title: Mathematical Optimization Theory and Operations Research. MOTOR 2020
  year: 2020
  ident: 7414_CR64
  doi: 10.1007/978-3-030-49988-4_23
– volume: 22
  start-page: 707
  year: 2018
  ident: 7414_CR63
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2753538
– volume: 3
  start-page: 124
  year: 1999
  ident: 7414_CR39
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771166
– ident: 7414_CR60
  doi: 10.1109/EWDTS.2014.7027058
– ident: 7414_CR80
  doi: 10.1145/2739480.2754659
– volume: 53
  start-page: 256
  year: 2014
  ident: 7414_CR24
  publication-title: J. Comput. Syst. Sci. Int.
  doi: 10.1134/S106423071402004X
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: 7414_CR5
– volume: 220
  start-page: 671
  year: 1983
  ident: 7414_CR9
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 12
  start-page: 23
  year: 2020
  ident: 7414_CR30
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-019-00291-4
– volume: 141
  start-page: 42
  year: 2015
  ident: 7414_CR33
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.020
– volume-title: Experimental Methods for the Analysis of Optimization Algorithms
  year: 2010
  ident: 7414_CR49
  doi: 10.1007/978-3-642-02538-9_11
– ident: 7414_CR84
  doi: 10.1145/2908812.2908885
– volume-title: Essentials of Metaheuristics.
  year: 2009
  ident: 7414_CR14
– volume: 96
  start-page: 175
  year: 2018
  ident: 7414_CR73
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.047
– ident: 7414_CR43
  doi: 10.5220/0006009502810286
– volume-title: Parallel Problem Solving from Nature – PPSN II
  year: 1992
  ident: 7414_CR38
– ident: 7414_CR48
  doi: 10.1145/3321707.3321725
– ident: 7414_CR78
– volume-title: Large-Scale Scientific Computing. LSSC 2017
  year: 2017
  ident: 7414_CR29
  doi: 10.1007/978-3-319-73441-5_36
– ident: 7414_CR40
  doi: 10.5220/0008163600930100
– ident: 7414_CR72
  doi: 10.1145/3071178.3071297
– volume-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
  year: 1979
  ident: 7414_CR77
– volume-title: Parallel Problem Solving from Nature – PPSN XIII. PPSN 2014
  year: 2014
  ident: 7414_CR79
  doi: 10.1007/978-3-319-10762-2_93
– ident: 7414_CR15
  doi: 10.1109/EWDTS.2016.7807680
– volume: 3
  start-page: 43
  year: 2016
  ident: 7414_CR50
  publication-title: Oper. Res. Perspect.
  doi: 10.1016/j.orp.2016.09.002
– volume: 36
  start-page: 267
  year: 2009
  ident: 7414_CR52
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2861
– ident: 7414_CR46
  doi: 10.1109/CEC.2013.6557555
– ident: 7414_CR31
  doi: 10.1145/3071178.3071304
– ident: 7414_CR74
  doi: 10.1145/2739482.2768487
– volume: 12
  start-page: 3683
  year: 2012
  ident: 7414_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.023
– ident: 7414_CR82
– ident: 7414_CR18
  doi: 10.1109/EWDTS.2019.8884371
– ident: 7414_CR6
  doi: 10.1109/MHS.1995.494215
– ident: 7414_CR42
  doi: 10.1109/IIAI-AAI.2015.290
– volume-title: Learning and Intelligent Optimization. LION 2011
  year: 2011
  ident: 7414_CR51
  doi: 10.1007/978-3-642-25566-3_40
– ident: 7414_CR67
  doi: 10.1145/2463372.2463480
– volume: 6
  start-page: 173
  year: 2016
  ident: 7414_CR44
  publication-title: J. Artif. Intell. Soft Comput. Res.
  doi: 10.1515/jaiscr-2016-0013
– volume: 403
  start-page: 33
  year: 2008
  ident: 7414_CR62
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.03.008
– volume-title: Theory of Evolutionary Computation: Recent Developments in Discrete Optimization
  year: 2020
  ident: 7414_CR55
  doi: 10.1007/978-3-030-29414-4
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: 7414_CR1
– ident: 7414_CR47
  doi: 10.1016/j.swevo.2018.10.013
– volume-title: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
  year: 1973
  ident: 7414_CR2
– ident: 7414_CR23
  doi: 10.1016/S1474-6670(17)57823-4
– ident: 7414_CR41
  doi: 10.1109/CEC.2018.8477977
– ident: 7414_CR81
  doi: 10.1145/2739480.2754683
– ident: 7414_CR17
  doi: 10.1109/EWDTS.2014.7027084
– volume: 4
  start-page: 14
  year: 1962
  ident: 7414_CR4
  publication-title: Ind. Res.
– volume: 77
  start-page: 473
  year: 2016
  ident: 7414_CR22
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117916030097
– volume: 80
  start-page: 1658
  year: 2018
  ident: 7414_CR68
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0354-9
– ident: 7414_CR76
  doi: 10.1145/3319619.3322067
– volume-title: Binäre Optimierung durch somatische Mutation, Tech.
  year: 1975
  ident: 7414_CR3
– volume: 9
  start-page: 159
  year: 2001
  ident: 7414_CR45
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– ident: 7414_CR26
  doi: 10.1109/ICMLA.2014.62
– ident: 7414_CR10
– ident: 7414_CR53
  doi: 10.1007/0-306-48041-7_14
– volume-title: Artificial Intelligence and Soft Computing – ICAISC 2006
  year: 2006
  ident: 7414_CR56
  doi: 10.1007/11785231_49
– volume: 26
  start-page: 432
  year: 1990
  ident: 7414_CR59
  publication-title: Kybernetika
– ident: 7414_CR36
  doi: 10.1201/9781420034349
– ident: 7414_CR19
  doi: 10.1109/EWDTS.2015.7493134
– volume: 16
  start-page: 122
  year: 1986
  ident: 7414_CR37
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/TSMC.1986.289288
– ident: 7414_CR20
  doi: 10.1007/978-3-319-18503-3_4
– ident: 7414_CR13
  doi: 10.1145/3205455.3205553
– ident: 7414_CR75
  doi: 10.1145/3377930.3390200
– volume: 567
  start-page: 87
  year: 2015
  ident: 7414_CR66
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.11.028
– volume: 8
  start-page: 311
  year: 2000
  ident: 7414_CR12
  publication-title: Evol. Comput.
  doi: 10.1162/106365600750078808
– ident: 7414_CR69
  doi: 10.1145/2739480.2754684
– ident: 7414_CR21
  doi: 10.1145/2464576.2480793
– ident: 7414_CR61
  doi: 10.1007/978-3-030-19810-7_31
– ident: 7414_CR16
  doi: 10.1007/978-3-030-19810-7_38
– volume: 1
  start-page: 53
  year: 1997
  ident: 7414_CR7
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585892
– ident: 7414_CR28
  doi: 10.1007/978-3-030-32258-8_51
– volume: 9
  start-page: 279
  year: 1998
  ident: 7414_CR58
  publication-title: Informatica
  doi: 10.3233/INF-1998-9302
– volume: 1
  start-page: 33
  year: 2007
  ident: 7414_CR8
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– ident: 7414_CR35
  doi: 10.1109/CEC.2017.7969505
– ident: 7414_CR25
– volume-title: Parallel Problem Solving from Nature – PPSN XV. PPSN 2018
  year: 2018
  ident: 7414_CR83
  doi: 10.1007/978-3-319-99259-4_3
– volume: 24
  start-page: 491
  year: 2016
  ident: 7414_CR32
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00184
– volume-title: Artificial Neural Networks: Biological Inspirations – ICANN 2005
  year: 2005
  ident: 7414_CR57
  doi: 10.1007/11550822_53
– ident: 7414_CR70
  doi: 10.1145/3377930.3390172
– volume: 11
  start-page: 341
  year: 1997
  ident: 7414_CR11
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: 7414_CR27
  doi: 10.1145/2464576.2464678
– ident: 7414_CR71
  doi: 10.1145/2576768.2598350
SSID ssj0055886
Score 2.2202718
Snippet Self-adjustment of parameters can significantly improve the performance of evolutionary algorithms. A notable example is the (1 + (λ, λ)) genetic algorithm,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 885
SubjectTerms Computer Science
Control Structures and Microprogramming
Evolutionary algorithms
Genetic algorithms
Linear functions
Performance degradation
Performance enhancement
Title The “One-Fifth Rule” with Rollbacks for Self-Adjustment of the Population Size in the (1 + (λ, λ)) Genetic Algorithm
URI https://link.springer.com/article/10.3103/S0146411621070208
https://www.proquest.com/docview/2624678571
Volume 55
WOSCitedRecordID wos000749622200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYDnBgRywFzYEDUCKS2qmdY4WoOCBAFFBvkeMFikqKunDgxIfAl_APfES_BNtN2EGCWxRPHMsz9sx4xvMQWsc8ZAIHgce1CG2YMfE4N14rTRIqiCgpnzvUkgN6eMjq9eg4u8fdybPd85Ck26mdX-njHZuGVCZBUDZOCrXQksNo1Gg7ZvEaTmrn-fYbhszBO1pqz5IPQpnfd_FRGb1ZmJ-Cok7XVKf-NcppNJmZllAZyMIMGlLpLJrKYRsgW8WzaOJdDcI5dGcEBfr3D0ep8qoN3b2Ek15T9e8fwR7Rgi3andh7-GCsW6ippvYq8qrXccnp0NJgDEg4fkUBg1rjTkEjda83AijCxvPTNjw_bW6CrXBthgaV5kWrbfq-nkdn1b3T3X0vA2TwDDvLXY9oxQIspIxCe7NE2gesJKbC1z7jhGksI4I1DjnjmnJGMRGEKT-R0rRIvIBG0laqFhGwiMjQuOVGVHyiBOZRxHVCA86lToyJtoT8nDOxyKqVW9CMZmy8FjvT8ZeZXkJbr5_cDEp1_EZcyNkdZ6u2E5fKJaM3WEjN74s5e9-af-xs-U_UK2i8ZBNjXE5MAY102z21isbEbbfRaa85YX4BEuXssw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RqFR6KD8FQfmbAwcoRCRrZ-0cV4gVVZctYmnFLXL80y5asmh_euDEg5Qn4R14CJ6ktjcBWqASvUXxxLE8Y8-MZzwfwDoRMZckigJhZOzCjFkghPVaWZYxSWVFh8KjljRYs8lPTpLD4h53v8x2L0OSfqf2fmVIdlwaUpVGUdU6KcxBS76CCWoVliuYf9T6Vm6_ccw9vKOjDhz5KJT5dBd_KqN7C_OvoKjXNfWp_xrlNLwrTEusjWRhBsZ0PgtTJWwDFqt4Ft4-qEH4Hi6soODt5a8vuQ7qbTP4gUfDjr69vEJ3RIuuaHfm7uGjtW6xpTsmqKnTYd8np2PXoDUg8fAOBQxb7QuN7dy_3ohwCzdurrfx5npzE12Fazs0rHW-d3u277M5-FrfO97dDwpAhsCyszoIqNE8IlKpJHY3S5R7IFoRJkMTckG5ISqhxJBYcGGY4IxQSbkOM6VsiyLzMJ53c70AyBOqYuuWW1EJqZZEJIkwGYuEUCazJtoihCVnUllUK3egGZ3Uei1uptNHM70IH-8-OR-V6vgX8XLJ7rRYtf20Uq1YvcFjZn-_VbL3vvnZzj68iHoN3uwfHzTSxqfm5yWYrLgkGZ8fswzjg95Qr8Br-XPQ7vdWvWD_BjMp75c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5RqCo4QEuLoEA7hx6g1IqdXWfXxwgatSpKo6atuFnr_WmDgoMSpwdOPEj7JLwDD8GTsOPY0H-p6s3yjsernVnvjOfnA3jGVCw1i6JAOR1TmDELlPJeq8gyoblu2lCVqCWHotuVR0dJr8I5ndTZ7nVIclbTQF2a8qJxalyj9DFD1qCUpBaPopZ3WATBTN6BBU559OSu9z_Wn-I4liXUI1EHRD4La_6exY8H0621-VOAtDx3Oiv_PeP7sFyZnNie6cgDmLP5KqzUcA5Y7e5VWPquN-FDOPMKhFfnX9_mNugMXPEZ302H9ur8G9KvW6Rm3hnV56O3erFvhy5om-PppExax5FDb1hi7wYdDPuDM4uDvLy9E-Ee7lxevMDLi91dpM7XfmrYHn4ajT3vk0fwofPy_f6roAJqCLyYW0XAnZUR08YkMVWcGLpg1jChQxdKxaVjJuHMsVhJ5YSSgnHNpQ0zY_yIYWswn49yuw4oE25i7657FQq51UwliXKZiJQyLvOm2waEtZRSXXUxJzCNYeq9GVrp9JeV3oDnN4-czlp4_I14qxZ9Wu3mSdpsNf15ImPhX79Xi_p2-I_MHv8T9VO41zvopIevu282YbFJuTNl2swWzBfjqd2Gu_pLMZiMn5Q6fg1byPh7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%E2%80%9COne-Fifth+Rule%E2%80%9D+with+Rollbacks+for+Self-Adjustment+of+the+Population+Size+in+the+%281+%2B+%28%CE%BB%2C+%CE%BB%29%29+Genetic+Algorithm&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Bassin%2C+A.+O.&rft.au=Buzdalov%2C+M.+V.&rft.au=Shalyto%2C+A.+A.&rft.date=2021-12-01&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=55&rft.issue=7&rft.spage=885&rft.epage=902&rft_id=info:doi/10.3103%2FS0146411621070208&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0146411621070208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon