Alternating direction method of multipliers with difference of convex functions

In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in computational mathematics Ročník 44; číslo 3; s. 723 - 744
Hlavní autoři: Sun, Tao, Yin, Penghang, Cheng, Lizhi, Jiang, Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2018
Springer Nature B.V
Témata:
ISSN:1019-7168, 1572-9044
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-Łojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.
AbstractList In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While this kind of problems in theory can be solved by the celebrated alternating direction method of multipliers (ADMM), a direct application of ADMM often leads to difficult nonconvex subproblems. To address this issue, we propose to convexify the subproblems through a linearization technique as done in the difference of convex functions algorithm (DCA). By assuming the Kurdyka-Łojasiewicz property, we prove that the resulting algorithm sequentially converges to a critical point. It turns out that in the applications of signal and image processing such as compressed sensing and image denoising, the proposed algorithm usually enjoys closed-form solutions of the subproblems and thus can be very efficient. We provide numerical experiments to demonstrate the effectiveness of our algorithm.
Author Sun, Tao
Yin, Penghang
Jiang, Hao
Cheng, Lizhi
Author_xml – sequence: 1
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  email: nudtsuntao@163.com, nudttaosun@gmail.com
  organization: College of Science, National University of Defense Technology
– sequence: 2
  givenname: Penghang
  surname: Yin
  fullname: Yin, Penghang
  organization: Department of Mathematics, University of California
– sequence: 3
  givenname: Lizhi
  surname: Cheng
  fullname: Cheng, Lizhi
  organization: College of Science & The State Key Laboratory for High Performance Computation, National University of Defense Technology
– sequence: 4
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  organization: College of Computer, National University of Defense Technology
BookMark eNp9kFtLAzEQhYNUsK3-AN8WfI4m2Vx2H0vxBoW-6HPYzSZtyjapSerl35t1BUHQpxlmzjecOTMwcd5pAC4xusYIiZuIEaUUIixgzVgNyxMwxUwQWOf5JPcI11BgXp2BWYw7hFDNBZuC9aJPOrgmWbcpOhu0Sta7Yq_T1neFN8X-2Cd76K0OsXizaZtFxuigndLDWnn3qt8Lc3RfYDwHp6bpo774rnPwfHf7tHyAq_X943KxgqrEPEHaqbbsaGUM4S01plJcVKKrkWYtaygVJG9007GWU91iUoq6pJwSjlRrMG_LObga7x6CfznqmOTOH_MffZQEMU4wriueVWJUqeBjDNpIZVMzGE2hsb3ESA7pyTE9mdOTQ3qyzCT-RR6C3Tfh41-GjEzMWrfR4cfT39An7A-E0w
CitedBy_id crossref_primary_10_1109_LCOMM_2019_2896937
crossref_primary_10_1007_s10915_024_02550_0
crossref_primary_10_1109_TNSM_2021_3112796
crossref_primary_10_3390_math9121373
crossref_primary_10_1007_s11222_024_10492_8
crossref_primary_10_1109_TSP_2018_2868269
crossref_primary_10_1007_s10915_024_02715_x
crossref_primary_10_1109_TIP_2019_2924339
crossref_primary_10_1109_ACCESS_2020_3006500
crossref_primary_10_1631_FITEE_1800566
crossref_primary_10_1109_ACCESS_2020_2981740
crossref_primary_10_1007_s10915_025_02900_6
crossref_primary_10_1109_ACCESS_2020_2972805
crossref_primary_10_1007_s10957_024_02539_7
crossref_primary_10_1016_j_ejor_2025_04_034
crossref_primary_10_1109_ACCESS_2019_2949050
crossref_primary_10_1016_j_ins_2019_06_024
crossref_primary_10_1137_21M1429539
crossref_primary_10_1007_s10898_021_01079_y
crossref_primary_10_1007_s10898_019_00828_4
crossref_primary_10_1109_TAC_2024_3474061
crossref_primary_10_1007_s10915_020_01356_0
Cites_doi 10.5802/aif.1384
10.1007/s11464-012-0194-5
10.1137/080725891
10.1007/s12532-010-0017-1
10.1137/140952363
10.1007/s00211-014-0673-6
10.1007/BF01582566
10.1016/0167-2789(92)90242-F
10.1007/s10915-016-0169-x
10.1137/090774823
10.1137/120878951
10.1016/0898-1221(76)90003-1
10.1109/TSP.2009.2026004
10.1016/0041-5553(67)90040-7
10.1137/050644641
10.1137/040605412
10.1109/JSTSP.2010.2042333
10.1137/070703983
10.1137/110836936
10.1137/14098435X
10.1007/s10107-013-0701-9
10.1007/s10915-014-9930-1
10.1137/110833543
10.1137/080724265
10.1137/090760350
10.1007/s10915-015-0048-x
10.5802/aif.1638
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10444-017-9559-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
EndPage 744
ExternalDocumentID 10_1007_s10444_017_9559_3
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61402495
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-4dcb3d48ff26b4ff8c6787d90e5b5a4472ff2ead5b64eb123793464260cbf16b3
IEDL.DBID RSV
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435587000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1019-7168
IngestDate Wed Sep 17 13:51:23 EDT 2025
Sat Nov 29 04:13:19 EST 2025
Tue Nov 18 22:36:13 EST 2025
Fri Feb 21 02:38:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Alternating direction method of multipliers
Kurdyka-Łojasiewicz property
90C30
Difference of convex functions
90C26
47N10
Nonconvex
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4dcb3d48ff26b4ff8c6787d90e5b5a4472ff2ead5b64eb123793464260cbf16b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2056211986
PQPubID 2043875
PageCount 22
ParticipantIDs proquest_journals_2056211986
crossref_citationtrail_10_1007_s10444_017_9559_3
crossref_primary_10_1007_s10444_017_9559_3
springer_journals_10_1007_s10444_017_9559_3
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Modelling in Science and Engineering
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lou, Zeng, Osher, Xin (CR22) 2015; 8
Boley (CR1) 2013; 23
Goldstein, Osher (CR12) 2009; 2
Yin, Lou, He, Xin (CR39) 2015; 37
Rudin, Osher, Fatemi (CR29) 1992; 60
Ng, Weiss, Yuan (CR24) 2010; 32
CR18
CR17
CR16
CR15
Wen, Goldfarb, Yin (CR35) 2010; 2
Gasso, Rakotomamonjy, Canu (CR10) 2009; 57
CR34
Wang, Yang, Yin, Zhang (CR33) 2008; 1
Łojasiewicz (CR19) 1993; 43
CR31
Bolte, Daniilidis, Lewis (CR2) 2007; 17
CR30
Lou, Yin, He, Xin (CR20) 2015; 64
Osher, Burger, Goldfarb, Xu, Yin (CR25) 2005; 4
He, Yuan (CR14) 2012; 50
Gabay, Mercier (CR9) 1976; 2
Lou, Yin, Xin (CR21) 2016; 68
Yin, Osher, Goldfarb, Darbon (CR42) 2008; 1
He, Yuan (CR13) 2012; 130
Wang, Yuan (CR32) 2012; 34
Bregma (CR4) 1967; 7
CR6
Parikh, Boyd (CR26) 2013; 1
CR8
Yang, Zhang, Yin (CR38) 2010; 4
CR7
CR27
CR23
Glowinski, Marroco (CR11) 1975; 9
Bolte, Sabach, Teboulle (CR3) 2014; 146
CR40
Xu, Yin, Wen, Zhang (CR36) 2012; 7
Chen, Teboulle (CR5) 1994; 64
Yin (CR41) 2010; 3
Rockafellar (CR28) 2015
Yang, Zhang (CR37) 2011; 33
D Gabay (9559_CR9) 1976; 2
W Yin (9559_CR42) 2008; 1
B He (9559_CR14) 2012; 50
Y Lou (9559_CR20) 2015; 64
9559_CR30
Y Lou (9559_CR21) 2016; 68
9559_CR34
9559_CR31
J Yang (9559_CR37) 2011; 33
9559_CR16
9559_CR15
LM Bregma (9559_CR4) 1967; 7
9559_CR18
9559_CR17
RT Rockafellar (9559_CR28) 2015
Y Wang (9559_CR33) 2008; 1
G Chen (9559_CR5) 1994; 64
MK Ng (9559_CR24) 2010; 32
R Glowinski (9559_CR11) 1975; 9
S Łojasiewicz (9559_CR19) 1993; 43
J Yang (9559_CR38) 2010; 4
9559_CR7
9559_CR6
9559_CR8
G Gasso (9559_CR10) 2009; 57
S Osher (9559_CR25) 2005; 4
Y Xu (9559_CR36) 2012; 7
9559_CR40
B He (9559_CR13) 2012; 130
9559_CR23
T Goldstein (9559_CR12) 2009; 2
Y Lou (9559_CR22) 2015; 8
W Yin (9559_CR41) 2010; 3
9559_CR27
X Wang (9559_CR32) 2012; 34
Z Wen (9559_CR35) 2010; 2
P Yin (9559_CR39) 2015; 37
N Parikh (9559_CR26) 2013; 1
LI Rudin (9559_CR29) 1992; 60
J Bolte (9559_CR3) 2014; 146
D Boley (9559_CR1) 2013; 23
J Bolte (9559_CR2) 2007; 17
References_xml – volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  end-page: 1595
  ident: CR19
  article-title: Sur la géométrie semi-et sous-analytique
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.1384
– ident: CR18
– volume: 7
  start-page: 365
  issue: 2
  year: 2012
  end-page: 384
  ident: CR36
  article-title: An alternating direction algorithm for matrix completion with nonnegative factors
  publication-title: Frontiers Math. China
  doi: 10.1007/s11464-012-0194-5
– ident: CR16
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  end-page: 343
  ident: CR12
  article-title: The split bregman method for l1-regularized problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080725891
– volume: 33
  start-page: 250278
  year: 2011
  ident: CR37
  article-title: Alternating direction algorithms for l1-problems in compressive sensing
  publication-title: Siamj. Sci. Comput.
– ident: CR30
– volume: 2
  start-page: 203
  issue: 3-4
  year: 2010
  end-page: 230
  ident: CR35
  article-title: Alternating direction augmented lagrangian methods for semidefinite programming
  publication-title: Math. Programm. Comput.
  doi: 10.1007/s12532-010-0017-1
– volume: 37
  start-page: A536
  issue: 1
  year: 2015
  end-page: A563
  ident: CR39
  article-title: Minimization of 1-2 for compressed sensing
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– ident: CR6
– volume: 130
  start-page: 567
  issue: 3
  year: 2012
  end-page: 577
  ident: CR13
  article-title: On non-ergodic convergence rate of douglas–rachford alternating direction method of multipliers
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0673-6
– year: 2015
  ident: CR28
  publication-title: Convex Analysis
– volume: 64
  start-page: 81
  issue: 1
  year: 1994
  end-page: 101
  ident: CR5
  article-title: A proximal-based decomposition method for convex minimization problems
  publication-title: Math. Programm.
  doi: 10.1007/BF01582566
– ident: CR8
– volume: 60
  start-page: 259
  issue: 1
  year: 1992
  end-page: 268
  ident: CR29
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– volume: 68
  start-page: 1082
  issue: 3
  year: 2016
  end-page: 1100
  ident: CR21
  article-title: Point source super-resolution via non-convex l1 based methods
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0169-x
– ident: CR40
– volume: 32
  start-page: 2710
  issue: 5
  year: 2010
  end-page: 2736
  ident: CR24
  article-title: Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090774823
– ident: CR27
– volume: 23
  start-page: 2183
  issue: 4
  year: 2013
  end-page: 2207
  ident: CR1
  article-title: Local linear convergence of the alternating direction method of multipliers on quadratic or linear programs
  publication-title: SIAM J. Optim.
  doi: 10.1137/120878951
– ident: CR23
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  end-page: 40
  ident: CR9
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 57
  start-page: 4686
  issue: 12
  year: 2009
  end-page: 4698
  ident: CR10
  article-title: Recovering sparse signals with a certain family of nonconvex penalties and dc programming
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2026004
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  end-page: 217
  ident: CR4
  article-title: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 9
  start-page: 41
  issue: R2
  year: 1975
  end-page: 76
  ident: CR11
  article-title: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires
  publication-title: Rev. Fr. d’automatique, Inf., Rech. Opérationnelle Anal. Numérique
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  end-page: 1223
  ident: CR2
  article-title: The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  end-page: 489
  ident: CR25
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040605412
– ident: CR15
– volume: 1
  start-page: 123
  issue: 3
  year: 2013
  end-page: 231
  ident: CR26
  article-title: Proximal algorithms
  publication-title: Found. Trends Optim.
– ident: CR17
– ident: CR31
– volume: 4
  start-page: 288
  issue: 2
  year: 2010
  end-page: 297
  ident: CR38
  article-title: A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data
  publication-title: IEEE J. Select. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042333
– ident: CR34
– volume: 1
  start-page: 143
  issue: 1
  year: 2008
  end-page: 168
  ident: CR42
  article-title: Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070703983
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  end-page: 709
  ident: CR14
  article-title: On the o(1/n) convergence rate of the douglas-rachford alternating direction method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 8
  start-page: 1798
  issue: 3
  year: 2015
  end-page: 1823
  ident: CR22
  article-title: A weighted difference of anisotropic and isotropic total variation model for image processing
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/14098435X
– volume: 146
  start-page: 459
  issue: 1-2
  year: 2014
  end-page: 494
  ident: CR3
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math. Programm.
  doi: 10.1007/s10107-013-0701-9
– ident: CR7
– volume: 64
  start-page: 178
  issue: 1
  year: 2015
  end-page: 196
  ident: CR20
  article-title: Computing sparse representation in a highly coherent dictionary based on difference of l1 and l2
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9930-1
– volume: 34
  start-page: A2792
  issue: 5
  year: 2012
  end-page: A2811
  ident: CR32
  article-title: The linearized alternating direction method of multipliers for dantzig selector
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110833543
– volume: 1
  start-page: 248
  issue: 3
  year: 2008
  end-page: 272
  ident: CR33
  article-title: A new alternating minimization algorithm for total variation image reconstruction
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080724265
– volume: 3
  start-page: 856
  issue: 4
  year: 2010
  end-page: 877
  ident: CR41
  article-title: Analysis and generalizations of the linearized bregman method
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/090760350
– volume: 4
  start-page: 288
  issue: 2
  year: 2010
  ident: 9559_CR38
  publication-title: IEEE J. Select. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2042333
– volume: 7
  start-page: 365
  issue: 2
  year: 2012
  ident: 9559_CR36
  publication-title: Frontiers Math. China
  doi: 10.1007/s11464-012-0194-5
– volume: 64
  start-page: 81
  issue: 1
  year: 1994
  ident: 9559_CR5
  publication-title: Math. Programm.
  doi: 10.1007/BF01582566
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  ident: 9559_CR9
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(76)90003-1
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 9559_CR4
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– ident: 9559_CR18
– ident: 9559_CR31
– volume: 1
  start-page: 248
  issue: 3
  year: 2008
  ident: 9559_CR33
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080724265
– volume: 37
  start-page: A536
  issue: 1
  year: 2015
  ident: 9559_CR39
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140952363
– volume: 1
  start-page: 123
  issue: 3
  year: 2013
  ident: 9559_CR26
  publication-title: Found. Trends Optim.
– volume: 64
  start-page: 178
  issue: 1
  year: 2015
  ident: 9559_CR20
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9930-1
– volume: 17
  start-page: 1205
  issue: 4
  year: 2007
  ident: 9559_CR2
  publication-title: SIAM J. Optim.
  doi: 10.1137/050644641
– ident: 9559_CR7
  doi: 10.1007/s10915-015-0048-x
– volume: 57
  start-page: 4686
  issue: 12
  year: 2009
  ident: 9559_CR10
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2026004
– volume: 23
  start-page: 2183
  issue: 4
  year: 2013
  ident: 9559_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/120878951
– volume-title: Convex Analysis
  year: 2015
  ident: 9559_CR28
– ident: 9559_CR8
– ident: 9559_CR6
– volume: 2
  start-page: 323
  issue: 2
  year: 2009
  ident: 9559_CR12
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080725891
– volume: 1
  start-page: 143
  issue: 1
  year: 2008
  ident: 9559_CR42
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070703983
– volume: 33
  start-page: 250278
  year: 2011
  ident: 9559_CR37
  publication-title: Siamj. Sci. Comput.
– volume: 34
  start-page: A2792
  issue: 5
  year: 2012
  ident: 9559_CR32
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110833543
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  ident: 9559_CR25
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040605412
– ident: 9559_CR34
– ident: 9559_CR15
– ident: 9559_CR40
– ident: 9559_CR17
– volume: 130
  start-page: 567
  issue: 3
  year: 2012
  ident: 9559_CR13
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0673-6
– volume: 9
  start-page: 41
  issue: R2
  year: 1975
  ident: 9559_CR11
  publication-title: Rev. Fr. d’automatique, Inf., Rech. Opérationnelle Anal. Numérique
– ident: 9559_CR30
– volume: 50
  start-page: 700
  issue: 2
  year: 2012
  ident: 9559_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 43
  start-page: 1575
  issue: 5
  year: 1993
  ident: 9559_CR19
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.1384
– volume: 32
  start-page: 2710
  issue: 5
  year: 2010
  ident: 9559_CR24
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090774823
– ident: 9559_CR16
  doi: 10.5802/aif.1638
– ident: 9559_CR23
– volume: 2
  start-page: 203
  issue: 3-4
  year: 2010
  ident: 9559_CR35
  publication-title: Math. Programm. Comput.
  doi: 10.1007/s12532-010-0017-1
– volume: 146
  start-page: 459
  issue: 1-2
  year: 2014
  ident: 9559_CR3
  publication-title: Math. Programm.
  doi: 10.1007/s10107-013-0701-9
– volume: 3
  start-page: 856
  issue: 4
  year: 2010
  ident: 9559_CR41
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/090760350
– ident: 9559_CR27
– volume: 60
  start-page: 259
  issue: 1
  year: 1992
  ident: 9559_CR29
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– volume: 8
  start-page: 1798
  issue: 3
  year: 2015
  ident: 9559_CR22
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/14098435X
– volume: 68
  start-page: 1082
  issue: 3
  year: 2016
  ident: 9559_CR21
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0169-x
SSID ssj0009675
Score 2.2863173
Snippet In this paper, we consider the minimization of a class of nonconvex composite functions with difference of convex structure under linear constraints. While...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 723
SubjectTerms Algorithms
Composite functions
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Convex analysis
Critical point
Image processing
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Multipliers
Noise reduction
Signal processing
Visualization
Title Alternating direction method of multipliers with difference of convex functions
URI https://link.springer.com/article/10.1007/s10444-017-9559-3
https://www.proquest.com/docview/2056211986
Volume 44
WOSCitedRecordID wos000435587000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9044
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009675
  issn: 1019-7168
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHT0qgbT57HOLwoFP8YrfSpK0IoxvrFP98kzZdVVTQcz4IL-_lveS9_H4Ax4myPNqewuZCyzFNmY_jmEksMnMSspgJFZfo-pdiOJSjUXjj_nEXdbV7nZIsT-oPn90otRUTNuXIQkyWYcV4O2n5Gm7vHhukXV6i6xpVC7G5DMg6lfndFJ-dURNhfkmKlr5m0P7XKjdhw4WWqF_pwhYspXkH2i7MRM6Iiw6sXy2gWottuO6P3Ztg_oQqB2e2ClXM0miSIVdyaCmzkX21RTWnik5tc1m2_oasfyxVeAceBuf3ZxfYsSxgTXw-xzTRiiRUZlnAFc0yqY3_EknopUyxmFIRmBajb0xxag72gBiLptwC22uV-VyRXWjlkzzdAyS0TojQnHIem3FcKh76odbESwSPue6CV4s70g6C3DJhjKMGPNmKLzLii6z4ItKFk8WQaYW_8VvnXr2HkTPFIgpsiOdbVezCab1nTfOPk-3_qfcBrJlQSlZFZD1ozWcv6SGs6tf5czE7KjX0HdfV37Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoHn5TA2uajfRziUNym6JS9hSZtRRidrFP8803adFVRQZ8vCeFyX8ldfgdwHEnTR7stsb7QMkxi6uAwpD7mibaENKRchjm6fo8PBv5oFNzYf9xZWe1epiRzS_3hsxshpmLCpBxpgL1FWCLaYRnA_Nu7hwppl-XoulrUAqwvA36Zyvxuic_OqIowvyRFc1_Trf9rlxuwbkNL1ClkYRMW4rQBdRtmIqvEWQPW-nOo1mwLrjtj-yaYPqLCwemjQkVnaTRJkC05NC2zkXm1RWVPFRUbcl62_oaMf8xFeBvuu-fDswtsuyxg5TlshkmkpBcRP0lcJkmS-Er7Lx4F7ZhKGhLCXU3R8kYlI9qwu57WaMIMsL2SicOktwO1dJLGu4C4UpHHFSOMhXoe8yULnEAprx1xFjLVhHbJbqEsBLnphDEWFXiyYZ_Q7BOGfcJrwsl8ynOBv_Hb4FZ5hsKqYiZcE-I5RhSbcFqeWUX-cbG9P40-gpWLYb8nepeDq31Y1WGVXxSUtaA2m77EB7CsXmdP2fQwl9Z3XLvimA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoHn5SwfqRJ-zjUoTjnwA_2Vpq0EWF0Y63in2_SppuKCuJzPgiXu9wld_n9AI5jrnm0LY7VhZZikng2jiLPx0yqk9CLPMajAl2_x_p9fzgMBobnNKuq3auUZPmnQaM0pXl7Esv2h49vhOjqCZ1-9ALsLsIS0XX0-rp-9zhH3aUF0q5SuwCri4FfpTW_m-KzY5pHm18SpIXf6db_veINWDchJ-qUOrIJC0nagLoJP5Ex7qwBazczCNdsC247I_NWmD6h0vGpLUQl4zQaS2RKETWVNtKvuajiWhGJbi7K2d-Q9puFam_DQ_fi_uwSG_YFLFyb5pjEgrsx8aV0KCdS-kL5NRYHVuJxLyKEOapF6aHHKVEHvuMqSydUA94LLm3K3R2opeM02QXEhIhdJiihNFLjqM9pYAdCuFbMaERFE6xK9KEw0OSaIWMUzkGVtfhCJb5Qiy90m3AyGzIpcTl-69yq9jM0JpqFjg79bK2iTTit9m_e_ONke3_qfQQrg_Nu2LvqX-_Dqoq2_LLOrAW1fPqSHMCyeM2fs-lhobjv-TjrfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternating+direction+method+of+multipliers+with+difference+of+convex+functions&rft.jtitle=Advances+in+computational+mathematics&rft.au=Sun%2C+Tao&rft.au=Yin%2C+Penghang&rft.au=Cheng%2C+Lizhi&rft.au=Jiang%2C+Hao&rft.date=2018-06-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=44&rft.issue=3&rft.spage=723&rft.epage=744&rft_id=info:doi/10.1007%2Fs10444-017-9559-3&rft.externalDocID=10_1007_s10444_017_9559_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon