Real-time image recognition using weighted spatial pyramid networks

The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of real-time image processing Ročník 15; číslo 3; s. 617 - 629
Hlavní autori: Zhu, Xiaoning, Meng, Qingyue, Gu, Lize
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Predmet:
ISSN:1861-8200, 1861-8219
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems, 1990 ). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624, 2011 ) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci, 2012 ; Kingma and Ba in Comput Sci, 2014 ; Duchi et al. in J Mach Learn Res 12(7):2121–2159, 2011 ] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks, 2013 )].
AbstractList The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems, 1990 ). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624, 2011 ) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci, 2012 ; Kingma and Ba in Comput Sci, 2014 ; Duchi et al. in J Mach Learn Res 12(7):2121–2159, 2011 ] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks, 2013 )].
The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems, 1990). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624, 2011) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci, 2012; Kingma and Ba in Comput Sci, 2014; Duchi et al. in J Mach Learn Res 12(7):2121–2159, 2011] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks, 2013)].
Author Zhu, Xiaoning
Gu, Lize
Meng, Qingyue
Author_xml – sequence: 1
  givenname: Xiaoning
  surname: Zhu
  fullname: Zhu, Xiaoning
  email: xiaoning158@bupt.edu.cn
  organization: Information Security Center, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: Qingyue
  surname: Meng
  fullname: Meng, Qingyue
  organization: Information Security Center, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Lize
  surname: Gu
  fullname: Gu, Lize
  organization: Information Security Center, Beijing University of Posts and Telecommunications
BookMark eNp9kF1LwzAUQINMcFN_gG8Fn6P3tk3SPsrwCwaC6HNIu6Rmdm1NMkb_vRkVBUGfkodzbnLPgsy6vtOEXCBcIYC49oiM5RRQUBB5RscjMseCIy1SLGffd4ATsvB-A8AFz9icLJ-1ammwW53YrWp04nTdN50Ntu-Snbddk-y1bd6CXid-UMGqNhlGp7Z2nXQ67Hv37s_IsVGt1-df5yl5vbt9WT7Q1dP94_JmResMeaB5pVWVqRKLKoVMVYbxQgilTQ5oqkIhREJXCBxYamqm1nkEDDd1KZBBmZ2Sy2nu4PqPnfZBbvqd6-KTMo1TuciRYaTERNWu995pI2sb1GGf4JRtJYI8FJNTMRmLyUMxOUYTf5mDi1Hc-K-TTo6PbNdo9_Onv6VPnl6A5g
CitedBy_id crossref_primary_10_1080_01431161_2021_2005841
crossref_primary_10_1007_s00779_018_1168_8
crossref_primary_10_1007_s11042_023_15769_0
crossref_primary_10_1007_s11554_018_0831_7
crossref_primary_10_1007_s11554_018_0835_3
Cites_doi 10.1007/s11263-015-0816-y
10.1073/pnas.72.10.3812
10.1016/S0893-6080(98)00116-6
10.1109/TPAMI.2015.2389824
10.1016/j.image.2016.06.002
10.1049/ip-vis:19941301
10.1007/s11263-016-0880-y
10.1016/j.neucom.2015.11.134
10.1109/TSMC.2016.2629509
10.1007/s11554-016-0620-0
10.1007/978-3-319-25417-3_68
10.1109/CVPR.2005.177
10.1109/CVPR.2015.7298594
10.1109/WACV.2015.11
10.1109/CVPR.2011.5995691
10.1145/2647868.2654889
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2017
Springer-Verlag GmbH Germany, part of Springer Nature 2017.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11554-017-0743-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 629
ExternalDocumentID 10_1007_s11554_017_0743_y
GrantInformation_xml – fundername: the National 242 Information Security Program
  grantid: 2015A136
– fundername: The National Natural Science Foundation of China
  grantid: 61502048
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-4beab3a918b203abf56877aef401fb8a104beeb106052fc5ad4687f6fc9715093
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448821700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 01:38:06 EST 2025
Sat Nov 29 03:23:16 EST 2025
Tue Nov 18 20:56:53 EST 2025
Fri Feb 21 02:39:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Stochastic gradient-based optimization
Image recognition
Deep neural networks
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4beab3a918b203abf56877aef401fb8a104beeb106052fc5ad4687f6fc9715093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918674151
PQPubID 2044148
PageCount 13
ParticipantIDs proquest_journals_2918674151
crossref_citationtrail_10_1007_s11554_017_0743_y
crossref_primary_10_1007_s11554_017_0743_y
springer_journals_10_1007_s11554_017_0743_y
PublicationCentury 2000
PublicationDate 20181000
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 20181000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhang, Li, Cao, Ye, Chen, Shen, Perina, Ji (CR5) 2017; 47
CR18
Qian (CR19) 1999; 12
CR17
CR14
Russakovsky, Deng, Su, Fei-Fei (CR1) 2015; 115
CR12
Kendall, Grimes, Cipolla (CR15) 2016; 31
CR11
CR10
CR31
Duchi, Hazan, Singer (CR8) 2011; 12
CR30
Yang, Wang, Zhang (CR4) 2016; 213
Rosenblueth (CR25) 1975; 72
CR2
Zhang, Perina, Li, Murino, Liu, Ji (CR6) 2016; 118
Machot, Ali, Mosa (CR28) 2016; 2
CR7
CR29
CR9
CR27
CR26
CR24
He, Zhang, Ren (CR13) 2014; 37
CR23
CR22
CR21
CR20
Wang, Zhang, Han (CR16) 2016; 47
Vaillant, Monrocq, LeCun (CR3) 1994; 141
W Yang (743_CR4) 2016; 213
A Kendall (743_CR15) 2016; 31
L Wang (743_CR16) 2016; 47
743_CR9
N Qian (743_CR19) 1999; 12
743_CR20
743_CR21
J Duchi (743_CR8) 2011; 12
O Russakovsky (743_CR1) 2015; 115
R Vaillant (743_CR3) 1994; 141
FA Machot (743_CR28) 2016; 2
Baochang Zhang (743_CR6) 2016; 118
K He (743_CR13) 2014; 37
743_CR29
743_CR26
743_CR27
743_CR24
E Rosenblueth (743_CR25) 1975; 72
743_CR22
743_CR23
B Zhang (743_CR5) 2017; 47
743_CR31
743_CR10
743_CR7
743_CR30
743_CR2
743_CR17
743_CR18
743_CR14
743_CR11
743_CR12
References_xml – ident: CR22
– ident: CR18
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  ident: CR1
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 12
  start-page: 2121
  issue: 7
  year: 2011
  end-page: 2159
  ident: CR8
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: CR14
– ident: CR2
– ident: CR12
– volume: 72
  start-page: 3812C3814
  issue: 10
  year: 1975
  ident: CR25
  article-title: Point estimates for probability moments
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.72.10.3812
– ident: CR30
– ident: CR10
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  end-page: 151
  ident: CR19
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 37
  start-page: 1904
  issue: 9
  year: 2014
  end-page: 16
  ident: CR13
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 47
  start-page: 490
  year: 2016
  end-page: 499
  ident: CR16
  article-title: Robust object representation by boosting-like deep learning architecture
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.06.002
– ident: CR29
– ident: CR27
– ident: CR23
– ident: CR21
– volume: 2
  start-page: 1
  year: 2016
  end-page: 13
  ident: CR28
  article-title: Real-time raindrop detection based on cellular neural networks for ADAS
  publication-title: J. Real Time Image Process.
– ident: CR17
– ident: CR31
– volume: 141
  start-page: 245C250
  issue: 4
  year: 1994
  ident: CR3
  article-title: Original approach for the localisation of objects in images
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:19941301
– volume: 118
  start-page: 364
  issue: 3
  year: 2016
  end-page: 379
  ident: CR6
  article-title: Bounding multiple Gaussians uncertainty with application to object tracking
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0880-y
– ident: CR11
– ident: CR9
– volume: 31
  start-page: 125
  year: 2016
  end-page: 141
  ident: CR15
  article-title: PoseNet: a convolutional network for real-time 6-DOF camera relocalization
  publication-title: Educ. Inf.
– volume: 213
  start-page: 183
  year: 2016
  end-page: 190
  ident: CR4
  article-title: Face recognition using adaptive local ternary patterns method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.134
– volume: 47
  start-page: 693
  issue: 4
  year: 2017
  end-page: 703
  ident: CR5
  article-title: Output constraint transfer for kernelized correlation filter in tracking
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2629509
– ident: CR7
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 743_CR29
  doi: 10.1007/s11554-016-0620-0
– volume: 12
  start-page: 2121
  issue: 7
  year: 2011
  ident: 743_CR8
  publication-title: J. Mach. Learn. Res.
– ident: 743_CR17
  doi: 10.1007/978-3-319-25417-3_68
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 743_CR19
  publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc.
  doi: 10.1016/S0893-6080(98)00116-6
– ident: 743_CR24
– ident: 743_CR26
– volume: 2
  start-page: 1
  year: 2016
  ident: 743_CR28
  publication-title: J. Real Time Image Process.
– ident: 743_CR30
  doi: 10.1109/CVPR.2005.177
– ident: 743_CR11
  doi: 10.1109/CVPR.2015.7298594
– ident: 743_CR22
– volume: 213
  start-page: 183
  year: 2016
  ident: 743_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.134
– volume: 31
  start-page: 125
  year: 2016
  ident: 743_CR15
  publication-title: Educ. Inf.
– ident: 743_CR14
– ident: 743_CR18
  doi: 10.1109/WACV.2015.11
– ident: 743_CR2
– ident: 743_CR12
– ident: 743_CR10
– volume: 47
  start-page: 490
  year: 2016
  ident: 743_CR16
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.06.002
– ident: 743_CR20
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 743_CR1
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: 743_CR27
– volume: 37
  start-page: 1904
  issue: 9
  year: 2014
  ident: 743_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 743_CR9
– volume: 118
  start-page: 364
  issue: 3
  year: 2016
  ident: 743_CR6
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0880-y
– ident: 743_CR7
– volume: 72
  start-page: 3812C3814
  issue: 10
  year: 1975
  ident: 743_CR25
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.72.10.3812
– volume: 47
  start-page: 693
  issue: 4
  year: 2017
  ident: 743_CR5
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2629509
– volume: 141
  start-page: 245C250
  issue: 4
  year: 1994
  ident: 743_CR3
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:19941301
– ident: 743_CR21
– ident: 743_CR31
  doi: 10.1109/CVPR.2011.5995691
– ident: 743_CR23
  doi: 10.1145/2647868.2654889
SSID ssj0067635
Score 2.1434934
Snippet The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 617
SubjectTerms Accuracy
Airborne instruments
Algorithms
Artificial neural networks
Back propagation
Computer Graphics
Computer Science
Convergence
Data processing
Data transmission
Deep learning
Distributed processing
Estimation
Feature extraction
High resolution
Image processing
Image Processing and Computer Vision
Image resolution
Multimedia Information Systems
Natural disasters
Neural networks
Optimization algorithms
Pattern Recognition
Random variables
Real time
Regularization
Remote sensing
Signal,Image and Speech Processing
Software packages
Special Issue Paper
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBw8KcGlTdL2JDIcnoaIwm4laRMZuG6uU9l_73v9saLgLp6bhtCXfO-9vNfvI-TSceF8IzkLpZFMWKkY-hnGhWckhBCpS0QhNhEMh-FoFD1WF2551VZZY2IB1Ok0wTvyGy9C6jVwN_x29s5QNQqrq5WExibZ4h6AMBZlA1YjsUKyNUy4QsVxBauqZvHrHDpShhhdsHQuf_qlJtj8VR8t3M6g_d8F75HdKuCkd-UO2ScbNjsg7VrMgVZn-5D0nyBkZCg1T8cTABm6ai2aZhS741_pV3GNalOaYxs2TDpbzvVknNKs7CXPj8jL4P65_8AqhQWW-FwtmDBWG1_DSo3X87VxUoVBoK2DrMuZUEOuZiygeQ-SHs8lUqcCBjjlkiiASDLyj0krm2b2hFDIjFKdWi_CEEwEymiJ4ZrwhHJI0t8hvfr7xklFP44qGG9xQ5yMJonBJDGaJF52yNXqlVnJvbFucLc2Q1wdwzxubNAh17Uhm8d_Tna6frIzsgP7uaTF5V3SWsw_7DnZTj4X43x-UezBb8GH4HU
  priority: 102
  providerName: ProQuest
Title Real-time image recognition using weighted spatial pyramid networks
URI https://link.springer.com/article/10.1007/s11554-017-0743-y
https://www.proquest.com/docview/2918674151
Volume 15
WOSCitedRecordID wos000448821700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s9eDF-sRqLXvwpCw0yW4eRy0tglBKfVC8hN1kVwo2LU1V-u_dyaNBUUEvuWQyCbO7M99kZ78BONcW047kFvW55JQp7lKMM9RituQGQsQ6YlmzCW8w8MfjYFic407LavdySzLz1NVhNwx9FL1qxqu5qsEmR7IZTNHvHkv36yLDGmZZvmvha9dbmd-p-ByMKoT5ZVM0izX9xr--chd2CmhJrvK5sAcbKtmHRtm2gRSr-AC6IwMOKTaVJ5OpcSdkXUQ0SwjWwT-T9-yHqYpJigXXRul8tRDTSUySvGo8PYSHfu--e0OLXgo0cix3SZlUQjoisHxpdxwhNXd9zxNKm_xKS1-YrEwq47c7Jr2xdcRFzIyAdnUUeAYzBs4R1JNZoo6BmBwoFrGyAwRbzHOl4AjMmM1cjXT8TeiURg2jgmgc-128hBVFMhopNEYK0UjhqgkX60fmOcvGb8KtcqTCYsGloR0gM59BI1YTLsuRqW7_qOzkT9KnsG0mcs6Ha7Wgvly8qjPYit6Wk3TRhs3r3mA4akPt1qPmOuRP7WxufgBNGdpZ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2hgsRe-F7RXVh8gAvI2iaxnfSAEMuCQECFEEjcsnZio0o07TZdUP8Uv5GZfLRiJbhx4BxnJMfjN2_i8RuAbecJFxjp8UgayYWVilOc4Z7wjUQKkbpEFM0mwk4nurtrX83Ac30Xhsoqa0wsgDrtJ_SP_KffJuk1DDfeweAvp65RdLpat9Ao3eLcjp8wZcv3z37j-u74_snxzdEpr7oK8CTw1IgLY7UJNJozfivQxkkVhaG2DjMNZyKN-YmxiGAtJPq-S6ROBQ5wyiXtENkTiS8h5M-KQCjZgNlfx52r6xr7Fcm7UYoXKY_mPDlHLS7rUejmFBUKXdDx60g4pbf_ncgWge5k8bN9oiVYqCg1Oyz3wDLM2GwFFut2FaxCr1U4ukZSzEfdnmXdHsIomxRP9TNG9f_37Kn4UWxTllOhORodjIe6101ZVlbL52tw-yFT-QqNrJ_ZdWCY-6U6tX6bSKYIldGSCKnwhXLUhqAJrXo946QSWKc-Hw_xVBqaXCBGF4jJBeJxE3YnrwxKdZH3Bm_Uyx5XQJPH0zVvwl7tONPHbxr79r6xLZg_vbm8iC_OOuff4Qvu3lIE2NuAxmj4z27CXPI46ubDH9UOYPDnoz3qBYcwP7I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pIStbfr1KNOhKGPMD_ZWkjaRgevGWpX99-b6saKoID73GsIluftd7vI7gFNlMGUJ26CeLWzKpO1Q9DPUYKawNYSIVMiyZhNur-cNh36_6HOalNXuZUoyf9OALE1x2ppGqlU9fEM3SNHCZhyb82VYYTqQwZquwf1TaYodZFvDiMtzDJzCIq353RCfHVOFNr8kSDO_063_e8absFFATnKR75EtWJLxNtTLdg6kON070Blo0Eix2TwZjbWZIYvioklMsD7-mbxnF6kyIgkWYutBp_MZH48iEufV5MkuPHavHjrXtOixQEPLcFLKhOTC4r7hCbNtcaFsx3NdLpWOu5TwuI7WhNT2vK3DHlOFNo-YFlCOCn1XY0nf2oNaPInlPhAdG0U8kqaPIIy5juA2AjZmMkchTX8D2qWCg7AgIMc-GC9BRZ2MSgq0kgJUUjBvwNnil2nOvvGbcLNctaA4iElg-sjYp1GK0YDzcpWqzz8OdvAn6RNY6192g7ub3u0hrOu9nlPmGk2opbNXeQSr4Vs6SmbH2fb8ADF24rc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+image+recognition+using+weighted+spatial+pyramid+networks&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Zhu%2C+Xiaoning&rft.au=Meng%2C+Qingyue&rft.au=Gu%2C+Lize&rft.date=2018-10-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=15&rft.issue=3&rft.spage=617&rft.epage=629&rft_id=info:doi/10.1007%2Fs11554-017-0743-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_017_0743_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon