Real-time image recognition using weighted spatial pyramid networks
The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of th...
Uložené v:
| Vydané v: | Journal of real-time image processing Ročník 15; číslo 3; s. 617 - 629 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2018
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1861-8200, 1861-8219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems,
1990
). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624,
2011
) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci,
2012
; Kingma and Ba in Comput Sci,
2014
; Duchi et al. in J Mach Learn Res 12(7):2121–2159,
2011
] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks,
2013
)]. |
|---|---|
| AbstractList | The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems,
1990
). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624,
2011
) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci,
2012
; Kingma and Ba in Comput Sci,
2014
; Duchi et al. in J Mach Learn Res 12(7):2121–2159,
2011
] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks,
2013
)]. The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data stream. This exponentially growing data poses a new challenge for real-time image processing and recognition. Making full and effective use of the spectral information and spatial structure information of high-resolution remote sensing image is the key to the processing and recognition of high-resolution remote sensing data. In this paper, the adaptive multipoint moment estimation (AMME) stochastic optimization algorithm is proposed for the first time by using the finite lower-order moments and adding the estimating points. This algorithm not only reduces the probability of local optimum in the learning process, but also improves the convergence rate of the convolutional neural network (Lee Cun et al. in Advances in neural information processing systems, 1990). Second, according to the remote sensing image with characteristics of complex background and small sensitive targets, and by automatic discovery, locating small targets, and giving high weights, we proposed a feature extraction method named weighted pooling to further improve the performance of real-time image recognition. We combine the AMME and weighted pooling with the spatial pyramid representation (Harada et al. in Comput Vis Pattern Recognit 1617–1624, 2011) algorithm to form a new, multiscale, and multilevel real-time image recognition model and name it weighted spatial pyramid networks (WspNet). At the end, we use the MNIST, ImageNet, and natural disasters under remote sensing data sets to test WspNet. Compared with other real-time image recognition models, WspNet achieve a new state of the art in terms of convergence rate and image feature extraction compared with conventional stochastic gradient descent method [like AdaGrad, AdaDelta and Adam (Zeiler in Comput Sci, 2012; Kingma and Ba in Comput Sci, 2014; Duchi et al. in J Mach Learn Res 12(7):2121–2159, 2011] and pooling method [like max-pooling, avg-pooling and stochastic-pooling (Zeiler and Fergus in stochastic-pooling for regularization of deep convolutional neural networks, 2013)]. |
| Author | Zhu, Xiaoning Gu, Lize Meng, Qingyue |
| Author_xml | – sequence: 1 givenname: Xiaoning surname: Zhu fullname: Zhu, Xiaoning email: xiaoning158@bupt.edu.cn organization: Information Security Center, Beijing University of Posts and Telecommunications – sequence: 2 givenname: Qingyue surname: Meng fullname: Meng, Qingyue organization: Information Security Center, Beijing University of Posts and Telecommunications – sequence: 3 givenname: Lize surname: Gu fullname: Gu, Lize organization: Information Security Center, Beijing University of Posts and Telecommunications |
| BookMark | eNp9kF1LwzAUQINMcFN_gG8Fn6P3tk3SPsrwCwaC6HNIu6Rmdm1NMkb_vRkVBUGfkodzbnLPgsy6vtOEXCBcIYC49oiM5RRQUBB5RscjMseCIy1SLGffd4ATsvB-A8AFz9icLJ-1ammwW53YrWp04nTdN50Ntu-Snbddk-y1bd6CXid-UMGqNhlGp7Z2nXQ67Hv37s_IsVGt1-df5yl5vbt9WT7Q1dP94_JmResMeaB5pVWVqRKLKoVMVYbxQgilTQ5oqkIhREJXCBxYamqm1nkEDDd1KZBBmZ2Sy2nu4PqPnfZBbvqd6-KTMo1TuciRYaTERNWu995pI2sb1GGf4JRtJYI8FJNTMRmLyUMxOUYTf5mDi1Hc-K-TTo6PbNdo9_Onv6VPnl6A5g |
| CitedBy_id | crossref_primary_10_1080_01431161_2021_2005841 crossref_primary_10_1007_s00779_018_1168_8 crossref_primary_10_1007_s11042_023_15769_0 crossref_primary_10_1007_s11554_018_0831_7 crossref_primary_10_1007_s11554_018_0835_3 |
| Cites_doi | 10.1007/s11263-015-0816-y 10.1073/pnas.72.10.3812 10.1016/S0893-6080(98)00116-6 10.1109/TPAMI.2015.2389824 10.1016/j.image.2016.06.002 10.1049/ip-vis:19941301 10.1007/s11263-016-0880-y 10.1016/j.neucom.2015.11.134 10.1109/TSMC.2016.2629509 10.1007/s11554-016-0620-0 10.1007/978-3-319-25417-3_68 10.1109/CVPR.2005.177 10.1109/CVPR.2015.7298594 10.1109/WACV.2015.11 10.1109/CVPR.2011.5995691 10.1145/2647868.2654889 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2017 Springer-Verlag GmbH Germany, part of Springer Nature 2017. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s11554-017-0743-y |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| EndPage | 629 |
| ExternalDocumentID | 10_1007_s11554_017_0743_y |
| GrantInformation_xml | – fundername: the National 242 Information Security Program grantid: 2015A136 – fundername: The National Natural Science Foundation of China grantid: 61502048 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-4beab3a918b203abf56877aef401fb8a104beeb106052fc5ad4687f6fc9715093 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000448821700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-8200 |
| IngestDate | Wed Nov 05 01:38:06 EST 2025 Sat Nov 29 03:23:16 EST 2025 Tue Nov 18 20:56:53 EST 2025 Fri Feb 21 02:39:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Stochastic gradient-based optimization Image recognition Deep neural networks Remote sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-4beab3a918b203abf56877aef401fb8a104beeb106052fc5ad4687f6fc9715093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918674151 |
| PQPubID | 2044148 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2918674151 crossref_citationtrail_10_1007_s11554_017_0743_y crossref_primary_10_1007_s11554_017_0743_y springer_journals_10_1007_s11554_017_0743_y |
| PublicationCentury | 2000 |
| PublicationDate | 20181000 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 20181000 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Zhang, Li, Cao, Ye, Chen, Shen, Perina, Ji (CR5) 2017; 47 CR18 Qian (CR19) 1999; 12 CR17 CR14 Russakovsky, Deng, Su, Fei-Fei (CR1) 2015; 115 CR12 Kendall, Grimes, Cipolla (CR15) 2016; 31 CR11 CR10 CR31 Duchi, Hazan, Singer (CR8) 2011; 12 CR30 Yang, Wang, Zhang (CR4) 2016; 213 Rosenblueth (CR25) 1975; 72 CR2 Zhang, Perina, Li, Murino, Liu, Ji (CR6) 2016; 118 Machot, Ali, Mosa (CR28) 2016; 2 CR7 CR29 CR9 CR27 CR26 CR24 He, Zhang, Ren (CR13) 2014; 37 CR23 CR22 CR21 CR20 Wang, Zhang, Han (CR16) 2016; 47 Vaillant, Monrocq, LeCun (CR3) 1994; 141 W Yang (743_CR4) 2016; 213 A Kendall (743_CR15) 2016; 31 L Wang (743_CR16) 2016; 47 743_CR9 N Qian (743_CR19) 1999; 12 743_CR20 743_CR21 J Duchi (743_CR8) 2011; 12 O Russakovsky (743_CR1) 2015; 115 R Vaillant (743_CR3) 1994; 141 FA Machot (743_CR28) 2016; 2 Baochang Zhang (743_CR6) 2016; 118 K He (743_CR13) 2014; 37 743_CR29 743_CR26 743_CR27 743_CR24 E Rosenblueth (743_CR25) 1975; 72 743_CR22 743_CR23 B Zhang (743_CR5) 2017; 47 743_CR31 743_CR10 743_CR7 743_CR30 743_CR2 743_CR17 743_CR18 743_CR14 743_CR11 743_CR12 |
| References_xml | – ident: CR22 – ident: CR18 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: CR1 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 12 start-page: 2121 issue: 7 year: 2011 end-page: 2159 ident: CR8 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – ident: CR14 – ident: CR2 – ident: CR12 – volume: 72 start-page: 3812C3814 issue: 10 year: 1975 ident: CR25 article-title: Point estimates for probability moments publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.72.10.3812 – ident: CR30 – ident: CR10 – volume: 12 start-page: 145 issue: 1 year: 1999 end-page: 151 ident: CR19 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc. doi: 10.1016/S0893-6080(98)00116-6 – volume: 37 start-page: 1904 issue: 9 year: 2014 end-page: 16 ident: CR13 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 47 start-page: 490 year: 2016 end-page: 499 ident: CR16 article-title: Robust object representation by boosting-like deep learning architecture publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.06.002 – ident: CR29 – ident: CR27 – ident: CR23 – ident: CR21 – volume: 2 start-page: 1 year: 2016 end-page: 13 ident: CR28 article-title: Real-time raindrop detection based on cellular neural networks for ADAS publication-title: J. Real Time Image Process. – ident: CR17 – ident: CR31 – volume: 141 start-page: 245C250 issue: 4 year: 1994 ident: CR3 article-title: Original approach for the localisation of objects in images publication-title: IEE Proc. Vis. Image Signal Process. doi: 10.1049/ip-vis:19941301 – volume: 118 start-page: 364 issue: 3 year: 2016 end-page: 379 ident: CR6 article-title: Bounding multiple Gaussians uncertainty with application to object tracking publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0880-y – ident: CR11 – ident: CR9 – volume: 31 start-page: 125 year: 2016 end-page: 141 ident: CR15 article-title: PoseNet: a convolutional network for real-time 6-DOF camera relocalization publication-title: Educ. Inf. – volume: 213 start-page: 183 year: 2016 end-page: 190 ident: CR4 article-title: Face recognition using adaptive local ternary patterns method publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.134 – volume: 47 start-page: 693 issue: 4 year: 2017 end-page: 703 ident: CR5 article-title: Output constraint transfer for kernelized correlation filter in tracking publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2629509 – ident: CR7 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 743_CR29 doi: 10.1007/s11554-016-0620-0 – volume: 12 start-page: 2121 issue: 7 year: 2011 ident: 743_CR8 publication-title: J. Mach. Learn. Res. – ident: 743_CR17 doi: 10.1007/978-3-319-25417-3_68 – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 743_CR19 publication-title: Neural Netw. Off. J. Int. Neural Netw. Soc. doi: 10.1016/S0893-6080(98)00116-6 – ident: 743_CR24 – ident: 743_CR26 – volume: 2 start-page: 1 year: 2016 ident: 743_CR28 publication-title: J. Real Time Image Process. – ident: 743_CR30 doi: 10.1109/CVPR.2005.177 – ident: 743_CR11 doi: 10.1109/CVPR.2015.7298594 – ident: 743_CR22 – volume: 213 start-page: 183 year: 2016 ident: 743_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.134 – volume: 31 start-page: 125 year: 2016 ident: 743_CR15 publication-title: Educ. Inf. – ident: 743_CR14 – ident: 743_CR18 doi: 10.1109/WACV.2015.11 – ident: 743_CR2 – ident: 743_CR12 – ident: 743_CR10 – volume: 47 start-page: 490 year: 2016 ident: 743_CR16 publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.06.002 – ident: 743_CR20 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 743_CR1 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – ident: 743_CR27 – volume: 37 start-page: 1904 issue: 9 year: 2014 ident: 743_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: 743_CR9 – volume: 118 start-page: 364 issue: 3 year: 2016 ident: 743_CR6 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0880-y – ident: 743_CR7 – volume: 72 start-page: 3812C3814 issue: 10 year: 1975 ident: 743_CR25 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.72.10.3812 – volume: 47 start-page: 693 issue: 4 year: 2017 ident: 743_CR5 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2629509 – volume: 141 start-page: 245C250 issue: 4 year: 1994 ident: 743_CR3 publication-title: IEE Proc. Vis. Image Signal Process. doi: 10.1049/ip-vis:19941301 – ident: 743_CR21 – ident: 743_CR31 doi: 10.1109/CVPR.2011.5995691 – ident: 743_CR23 doi: 10.1145/2647868.2654889 |
| SSID | ssj0067635 |
| Score | 2.1434934 |
| Snippet | The latest-generation earth observation instruments on airborne and satellite platforms are currently producing an almost continuous high-dimensional data... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 617 |
| SubjectTerms | Accuracy Airborne instruments Algorithms Artificial neural networks Back propagation Computer Graphics Computer Science Convergence Data processing Data transmission Deep learning Distributed processing Estimation Feature extraction High resolution Image processing Image Processing and Computer Vision Image resolution Multimedia Information Systems Natural disasters Neural networks Optimization algorithms Pattern Recognition Random variables Real time Regularization Remote sensing Signal,Image and Speech Processing Software packages Special Issue Paper |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBw8KcGlTdL2JDIcnoaIwm4laRMZuG6uU9l_73v9saLgLp6bhtCXfO-9vNfvI-TSceF8IzkLpZFMWKkY-hnGhWckhBCpS0QhNhEMh-FoFD1WF2551VZZY2IB1Ok0wTvyGy9C6jVwN_x29s5QNQqrq5WExibZ4h6AMBZlA1YjsUKyNUy4QsVxBauqZvHrHDpShhhdsHQuf_qlJtj8VR8t3M6g_d8F75HdKuCkd-UO2ScbNjsg7VrMgVZn-5D0nyBkZCg1T8cTABm6ai2aZhS741_pV3GNalOaYxs2TDpbzvVknNKs7CXPj8jL4P65_8AqhQWW-FwtmDBWG1_DSo3X87VxUoVBoK2DrMuZUEOuZiygeQ-SHs8lUqcCBjjlkiiASDLyj0krm2b2hFDIjFKdWi_CEEwEymiJ4ZrwhHJI0t8hvfr7xklFP44qGG9xQ5yMJonBJDGaJF52yNXqlVnJvbFucLc2Q1wdwzxubNAh17Uhm8d_Tna6frIzsgP7uaTF5V3SWsw_7DnZTj4X43x-UezBb8GH4HU priority: 102 providerName: ProQuest |
| Title | Real-time image recognition using weighted spatial pyramid networks |
| URI | https://link.springer.com/article/10.1007/s11554-017-0743-y https://www.proquest.com/docview/2918674151 |
| Volume | 15 |
| WOSCitedRecordID | wos000448821700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1861-8219 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: P5Z dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1861-8219 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: K7- dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1861-8219 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s9eDF-sRqLXvwpCw0yW4eRy0tglBKfVC8hN1kVwo2LU1V-u_dyaNBUUEvuWQyCbO7M99kZ78BONcW047kFvW55JQp7lKMM9RituQGQsQ6YlmzCW8w8MfjYFic407LavdySzLz1NVhNwx9FL1qxqu5qsEmR7IZTNHvHkv36yLDGmZZvmvha9dbmd-p-ByMKoT5ZVM0izX9xr--chd2CmhJrvK5sAcbKtmHRtm2gRSr-AC6IwMOKTaVJ5OpcSdkXUQ0SwjWwT-T9-yHqYpJigXXRul8tRDTSUySvGo8PYSHfu--e0OLXgo0cix3SZlUQjoisHxpdxwhNXd9zxNKm_xKS1-YrEwq47c7Jr2xdcRFzIyAdnUUeAYzBs4R1JNZoo6BmBwoFrGyAwRbzHOl4AjMmM1cjXT8TeiURg2jgmgc-128hBVFMhopNEYK0UjhqgkX60fmOcvGb8KtcqTCYsGloR0gM59BI1YTLsuRqW7_qOzkT9KnsG0mcs6Ha7Wgvly8qjPYit6Wk3TRhs3r3mA4akPt1qPmOuRP7WxufgBNGdpZ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT-MwEB2hgsRe-F7RXVh8gAvI2iaxnfSAEMuCQECFEEjcsnZio0o07TZdUP8Uv5GZfLRiJbhx4BxnJMfjN2_i8RuAbecJFxjp8UgayYWVilOc4Z7wjUQKkbpEFM0mwk4nurtrX83Ac30Xhsoqa0wsgDrtJ_SP_KffJuk1DDfeweAvp65RdLpat9Ao3eLcjp8wZcv3z37j-u74_snxzdEpr7oK8CTw1IgLY7UJNJozfivQxkkVhaG2DjMNZyKN-YmxiGAtJPq-S6ROBQ5wyiXtENkTiS8h5M-KQCjZgNlfx52r6xr7Fcm7UYoXKY_mPDlHLS7rUejmFBUKXdDx60g4pbf_ncgWge5k8bN9oiVYqCg1Oyz3wDLM2GwFFut2FaxCr1U4ukZSzEfdnmXdHsIomxRP9TNG9f_37Kn4UWxTllOhORodjIe6101ZVlbL52tw-yFT-QqNrJ_ZdWCY-6U6tX6bSKYIldGSCKnwhXLUhqAJrXo946QSWKc-Hw_xVBqaXCBGF4jJBeJxE3YnrwxKdZH3Bm_Uyx5XQJPH0zVvwl7tONPHbxr79r6xLZg_vbm8iC_OOuff4Qvu3lIE2NuAxmj4z27CXPI46ubDH9UOYPDnoz3qBYcwP7I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pIStbfr1KNOhKGPMD_ZWkjaRgevGWpX99-b6saKoID73GsIluftd7vI7gFNlMGUJ26CeLWzKpO1Q9DPUYKawNYSIVMiyZhNur-cNh36_6HOalNXuZUoyf9OALE1x2ppGqlU9fEM3SNHCZhyb82VYYTqQwZquwf1TaYodZFvDiMtzDJzCIq353RCfHVOFNr8kSDO_063_e8absFFATnKR75EtWJLxNtTLdg6kON070Blo0Eix2TwZjbWZIYvioklMsD7-mbxnF6kyIgkWYutBp_MZH48iEufV5MkuPHavHjrXtOixQEPLcFLKhOTC4r7hCbNtcaFsx3NdLpWOu5TwuI7WhNT2vK3DHlOFNo-YFlCOCn1XY0nf2oNaPInlPhAdG0U8kqaPIIy5juA2AjZmMkchTX8D2qWCg7AgIMc-GC9BRZ2MSgq0kgJUUjBvwNnil2nOvvGbcLNctaA4iElg-sjYp1GK0YDzcpWqzz8OdvAn6RNY6192g7ub3u0hrOu9nlPmGk2opbNXeQSr4Vs6SmbH2fb8ADF24rc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+image+recognition+using+weighted+spatial+pyramid+networks&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Zhu%2C+Xiaoning&rft.au=Meng%2C+Qingyue&rft.au=Gu%2C+Lize&rft.date=2018-10-01&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=15&rft.issue=3&rft.spage=617&rft.epage=629&rft_id=info:doi/10.1007%2Fs11554-017-0743-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11554_017_0743_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |