Text Model for the Automatic Scoring of Business Letter Writing

This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatic control and computer sciences Ročník 57; číslo 7; s. 828 - 840
Hlavní autori: Zafievsky, D. D., Lagutina, N. S., Melnikova, O. A., Poletaev, A. Y.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Predmet:
ISSN:0146-4116, 1558-108X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects.
AbstractList This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects.
This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects.
Author Poletaev, A. Y.
Lagutina, N. S.
Zafievsky, D. D.
Melnikova, O. A.
Author_xml – sequence: 1
  givenname: D. D.
  orcidid: 0000-0001-8266-2283
  surname: Zafievsky
  fullname: Zafievsky, D. D.
  organization: Demidov Yaroslavl State University
– sequence: 2
  givenname: N. S.
  orcidid: 0000-0002-6137-8643
  surname: Lagutina
  fullname: Lagutina, N. S.
  email: lagutinans@gmail.com
  organization: Demidov Yaroslavl State University
– sequence: 3
  givenname: O. A.
  orcidid: 0000-0001-8814-7696
  surname: Melnikova
  fullname: Melnikova, O. A.
  organization: Demidov Yaroslavl State University
– sequence: 4
  givenname: A. Y.
  orcidid: 0000-0003-0116-4739
  surname: Poletaev
  fullname: Poletaev, A. Y.
  organization: Demidov Yaroslavl State University
BookMark eNp9kMtKAzEUhoNUsFYfwF3A9ejJddKV1OINKi5a0d2QpIlOaSc1yYC-vTNUEBRdncV3vnP5D9GgCY1D6ITAGSPAzudAuOSESMqgBCLLPTQkQqiCgHoeoGGPi54foMOUVgAdU3KILhbuPeP7sHRr7EPE-dXhSZvDRufa4rkNsW5ecPD4sk1141LCM5ezi_gp1rlDR2jf63Vyx191hB6vrxbT22L2cHM3ncwKy4jMBTfAufdcWlJqCdaDd0IsldTCeE-19AYMHYPWRgrrLdegjdJUl2Ojl2LMRuh0N3cbw1vrUq5WoY1Nt7JiVHDFCWWq6yK7LhtDStH5ahvrjY4fFYGqz6n6lVPnlD8cW-fu-9DkqOv1vybdmWnbp-Ti901_S5-PoXxt
CitedBy_id crossref_primary_10_18255_1818_1015_2025_1_42_65
Cites_doi 10.1007/s41237-021-00142-y
10.1007/978-3-030-52237-7_44
10.18653/v1/n18-1024
10.1007/s10462-021-10068-2
10.7717/peerj-cs.208
10.1007/978-3-030-78270-2_9
10.1145/3374587.3374596
10.24963/ijcai.2019/879
10.18653/v1/d16-1193
10.1109/tale48000.2019.9226022
10.1609/aaai.v32i1.12045
10.1002/hrm.21678
10.1007/978-3-030-74296-6_16
10.5121/csit.2020.101211
10.1007/s40593-017-0142-3
10.24093/awej/covid2.1
10.1186/s40862-022-00135-8
10.18653/v1/2020.findings-emnlp.141
10.18653/v1/2020.coling-main.535
10.18653/v1/2020.bea-1.15
10.20547/jess0421604201
10.1007/978-3-030-14118-9_57
ContentType Journal Article
Copyright Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 7, pp. 828–840. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2022, Vol. 29, No. 4, pp. 348–365.
Allerton Press, Inc. 2023.
Copyright_xml – notice: Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 7, pp. 828–840. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2022, Vol. 29, No. 4, pp. 348–365.
– notice: Allerton Press, Inc. 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3103/S0146411623070167
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 840
ExternalDocumentID 10_3103_S0146411623070167
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
Z7R
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-4b044ff46c17a60cf0fe55d86a5bff2a6fb0b290aab65cfc4a0ab8a2a79bad593
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171290500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0146-4116
IngestDate Sun Sep 28 03:49:29 EDT 2025
Tue Nov 18 22:27:59 EST 2025
Sat Nov 29 05:52:12 EST 2025
Fri Feb 21 02:40:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords automatic text processing
automated essay scoring
business letter writing
text options
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4b044ff46c17a60cf0fe55d86a5bff2a6fb0b290aab65cfc4a0ab8a2a79bad593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8814-7696
0000-0003-0116-4739
0000-0002-6137-8643
0000-0001-8266-2283
PQID 3254841238
PQPubID 2043879
PageCount 13
ParticipantIDs proquest_journals_3254841238
crossref_primary_10_3103_S0146411623070167
crossref_citationtrail_10_3103_S0146411623070167
springer_journals_10_3103_S0146411623070167
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Al-Bargi, A., Exploring online writing assessment amid Covid-19: Challenges and opportunities from teachers’ perspectives, Arab World Engl. J., 2022, no. 2, pp. 3–21. https://doi.org/10.24093/awej/covid2.1
Salim, Ya., Stevanus, V., Barlian, E., Sari, A., and Suhartono, D., Automated English digital essay grader using machine learning, 2019 IEEE Int. Conf. on Engineering, Technology and Education (TALE), Yogyakarta, Indonesia, 2019, IEEE, 2019, pp. 1–6. https://doi.org/10.1109/tale48000.2019.9226022
Farag, Yo., Yannakoudakis, H., and Briscoe, T., Neural automated essay scoring and coherence modeling for adversarially crafted input, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Walker, M., Ji, H., and Stent, A., Eds., New Orleans: Association for Computational Linguistics, 2018, vol. 1, pp. 263–271. https://doi.org/10.18653/v1/n18-1024
UtoM.A review of deep-neural automated essay scoring modelsBehaviormetrika20214845948410.1007/s41237-021-00142-y
Xia, L., Liu, J., and Zhang, Z., Automatic essay scoring model based on two-layer bi-directional long-short term memory network, Proc. 2019 3rd Int. Conf. on Computer Science and Artificial Intelligence, Normal, Ill., 2019, New York: Association for Computing Machinery, 2019, pp. 133–137. https://doi.org/10.1145/3374587.3374596
John BernardinH.ThomasonS.Ronald BuckleyM.KaneJ.Rater rating-level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountabilityHum. Resour. Manage.20165532134010.1002/hrm.21678
Mayfield, E. and Black, A.W., Should you fine-tune BERT for automated essay scoring?, Proc. Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, Burstein, J., Kochmar, E., Leacock, C., et al., Eds., Seattle, Wash.: Association for Computational Linguistics, 2020, pp. 151–162. https://doi.org/10.18653/v1/2020.bea-1.15
Ke, Z. and Ng, V., Automated essay scoring: A survey of the state of the art, Proc. Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, 2019, vol. 19, pp. 6300–6308. https://doi.org/10.24963/ijcai.2019/879
Tay, Yi., Phan, M., Tuan, L., and Hui, S., SkipFlow: Incorporating neural coherence features for end-to-end automatic text scoring, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5948–5955. https://doi.org/10.1609/aaai.v32i1.12045
ZhuW.SunYu.Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT)202010.5121/csit.2020.101211
Taghipour, K. and Ng, H., A neural approach to automated essay scoring, Proc. 2016 Conf. on Empirical Methods in Natural Language Processing, Su, J., Duh, K., and Carreras, X., Eds., Austin, Texas: Association for Computational Linguistics, 2016, pp. 1882–1891. https://doi.org/10.18653/v1/d16-1193
WilkensR.SeibertD.WangX.Franc¸oisT.MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf.2022MarseilleEuropean Language Resources Association
RameshD.SanampudiS.K.An automated essay scoring systems: A systematic literature reviewArtif. Intell. Rev.2021552495252710.1007/s10462-021-10068-2345843258460059
VajjalaS.Automated assessment of non-native learner essays: Investigating the role of linguistic featuresInt. J. Artif. Intell. Educ.2018287910510.1007/s40593-017-0142-3
Uto, M., Xie, Yi., and Ueno, M., Neural automated essay scoring incorporating handcrafted features, Proc. 28th Int. Conf. on Computational Linguistics, Scott, D., Bel, N., and Zong, Ch., Eds., Barcelona: International Committee on Computational Linguistics, 2020, pp. 6077–6088. https://doi.org/10.18653/v1/2020.coling-main.535
AomiI.TsutsumiE.UtoM.UenoM.Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D.2021ChamSpringer10.1007/978-3-030-78270-2_9
HusseinM.A.HassanH.NassefM.Automated language essay scoring systems: A literature reviewPeerJ Comput. Sci.20195e20810.7717/peerj-cs.208338168617924549
YangYu.ZhongJ.Automated essay scoring via example-based learning, Web Engineering. ICWE 20212021ChamSpringer10.1007/978-3-030-74296-6_16
SobolevaN.P.NilovaM.A.Teaching writing to students of humanitarian specialties using modern educational technologiesKazanskii Vestn. Molodykh Uchenykh201825759
UtoM.OkanoM.Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 20202020ChamSpringer10.1007/978-3-030-52237-7_44
Al-MwzaijiKh.N.A.AlzubiA.A.F.Online self-evaluation: The EFL writing skills in focus, Asian-Pac.J. Second Foreign Lang. Educ.2022711610.1186/s40862-022-00135-8
FareedM.AshrafA.BilalM.ESL learners' writing skills: Problems, factors and suggestionsJ. Educ. Soc. Sci.20164839410.20547/jess0421604201
YangR.CaoJ.WenZ.WuYo.HeX.Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020202010.18653/v1/2020.findings-emnlp.141
Darwish, S.M. and Mohamed, S.K., Automated essay evaluation based on fusion of fuzzy ontology and latent semantic analysis, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019, Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., and Tolba, M.F., Eds., Advances in Intelligent Systems and Computing, Cham: Springer, 2019, pp. 566–575. https://doi.org/10.1007/978-3-030-14118-9_57
7640_CR18
7640_CR16
7640_CR1
M.A. Hussein (7640_CR5) 2019; 5
R. Wilkens (7640_CR23) 2022
I. Aomi (7640_CR19) 2021
7640_CR10
M. Uto (7640_CR12) 2020
7640_CR21
7640_CR11
7640_CR22
S. Vajjala (7640_CR9) 2018; 28
7640_CR14
H. John Bernardin (7640_CR6) 2016; 55
7640_CR13
N.P. Soboleva (7640_CR2) 2018; 2
D. Ramesh (7640_CR24) 2021; 55
M. Uto (7640_CR8) 2021; 48
Yu. Yang (7640_CR15) 2021
R. Yang (7640_CR17) 2020
Kh.N.A. Al-Mwzaiji (7640_CR4) 2022; 7
7640_CR7
M. Fareed (7640_CR3) 2016; 4
W. Zhu (7640_CR20) 2020
References_xml – reference: VajjalaS.Automated assessment of non-native learner essays: Investigating the role of linguistic featuresInt. J. Artif. Intell. Educ.2018287910510.1007/s40593-017-0142-3
– reference: Farag, Yo., Yannakoudakis, H., and Briscoe, T., Neural automated essay scoring and coherence modeling for adversarially crafted input, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Walker, M., Ji, H., and Stent, A., Eds., New Orleans: Association for Computational Linguistics, 2018, vol. 1, pp. 263–271. https://doi.org/10.18653/v1/n18-1024
– reference: YangR.CaoJ.WenZ.WuYo.HeX.Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020202010.18653/v1/2020.findings-emnlp.141
– reference: SobolevaN.P.NilovaM.A.Teaching writing to students of humanitarian specialties using modern educational technologiesKazanskii Vestn. Molodykh Uchenykh201825759
– reference: Taghipour, K. and Ng, H., A neural approach to automated essay scoring, Proc. 2016 Conf. on Empirical Methods in Natural Language Processing, Su, J., Duh, K., and Carreras, X., Eds., Austin, Texas: Association for Computational Linguistics, 2016, pp. 1882–1891. https://doi.org/10.18653/v1/d16-1193
– reference: ZhuW.SunYu.Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT)202010.5121/csit.2020.101211
– reference: Al-Bargi, A., Exploring online writing assessment amid Covid-19: Challenges and opportunities from teachers’ perspectives, Arab World Engl. J., 2022, no. 2, pp. 3–21. https://doi.org/10.24093/awej/covid2.1
– reference: YangYu.ZhongJ.Automated essay scoring via example-based learning, Web Engineering. ICWE 20212021ChamSpringer10.1007/978-3-030-74296-6_16
– reference: Al-MwzaijiKh.N.A.AlzubiA.A.F.Online self-evaluation: The EFL writing skills in focus, Asian-Pac.J. Second Foreign Lang. Educ.2022711610.1186/s40862-022-00135-8
– reference: John BernardinH.ThomasonS.Ronald BuckleyM.KaneJ.Rater rating-level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountabilityHum. Resour. Manage.20165532134010.1002/hrm.21678
– reference: FareedM.AshrafA.BilalM.ESL learners' writing skills: Problems, factors and suggestionsJ. Educ. Soc. Sci.20164839410.20547/jess0421604201
– reference: AomiI.TsutsumiE.UtoM.UenoM.Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D.2021ChamSpringer10.1007/978-3-030-78270-2_9
– reference: Xia, L., Liu, J., and Zhang, Z., Automatic essay scoring model based on two-layer bi-directional long-short term memory network, Proc. 2019 3rd Int. Conf. on Computer Science and Artificial Intelligence, Normal, Ill., 2019, New York: Association for Computing Machinery, 2019, pp. 133–137. https://doi.org/10.1145/3374587.3374596
– reference: Darwish, S.M. and Mohamed, S.K., Automated essay evaluation based on fusion of fuzzy ontology and latent semantic analysis, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019, Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., and Tolba, M.F., Eds., Advances in Intelligent Systems and Computing, Cham: Springer, 2019, pp. 566–575. https://doi.org/10.1007/978-3-030-14118-9_57
– reference: HusseinM.A.HassanH.NassefM.Automated language essay scoring systems: A literature reviewPeerJ Comput. Sci.20195e20810.7717/peerj-cs.208338168617924549
– reference: Ke, Z. and Ng, V., Automated essay scoring: A survey of the state of the art, Proc. Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, 2019, vol. 19, pp. 6300–6308. https://doi.org/10.24963/ijcai.2019/879
– reference: Tay, Yi., Phan, M., Tuan, L., and Hui, S., SkipFlow: Incorporating neural coherence features for end-to-end automatic text scoring, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5948–5955. https://doi.org/10.1609/aaai.v32i1.12045
– reference: WilkensR.SeibertD.WangX.Franc¸oisT.MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf.2022MarseilleEuropean Language Resources Association
– reference: Mayfield, E. and Black, A.W., Should you fine-tune BERT for automated essay scoring?, Proc. Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, Burstein, J., Kochmar, E., Leacock, C., et al., Eds., Seattle, Wash.: Association for Computational Linguistics, 2020, pp. 151–162. https://doi.org/10.18653/v1/2020.bea-1.15
– reference: UtoM.A review of deep-neural automated essay scoring modelsBehaviormetrika20214845948410.1007/s41237-021-00142-y
– reference: RameshD.SanampudiS.K.An automated essay scoring systems: A systematic literature reviewArtif. Intell. Rev.2021552495252710.1007/s10462-021-10068-2345843258460059
– reference: Uto, M., Xie, Yi., and Ueno, M., Neural automated essay scoring incorporating handcrafted features, Proc. 28th Int. Conf. on Computational Linguistics, Scott, D., Bel, N., and Zong, Ch., Eds., Barcelona: International Committee on Computational Linguistics, 2020, pp. 6077–6088. https://doi.org/10.18653/v1/2020.coling-main.535
– reference: UtoM.OkanoM.Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 20202020ChamSpringer10.1007/978-3-030-52237-7_44
– reference: Salim, Ya., Stevanus, V., Barlian, E., Sari, A., and Suhartono, D., Automated English digital essay grader using machine learning, 2019 IEEE Int. Conf. on Engineering, Technology and Education (TALE), Yogyakarta, Indonesia, 2019, IEEE, 2019, pp. 1–6. https://doi.org/10.1109/tale48000.2019.9226022
– volume: 48
  start-page: 459
  year: 2021
  ident: 7640_CR8
  publication-title: Behaviormetrika
  doi: 10.1007/s41237-021-00142-y
– volume-title: Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 2020
  year: 2020
  ident: 7640_CR12
  doi: 10.1007/978-3-030-52237-7_44
– ident: 7640_CR14
  doi: 10.18653/v1/n18-1024
– volume: 55
  start-page: 2495
  year: 2021
  ident: 7640_CR24
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10068-2
– volume: 5
  start-page: e208
  year: 2019
  ident: 7640_CR5
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.208
– volume-title: Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D.
  year: 2021
  ident: 7640_CR19
  doi: 10.1007/978-3-030-78270-2_9
– ident: 7640_CR11
  doi: 10.1145/3374587.3374596
– ident: 7640_CR7
  doi: 10.24963/ijcai.2019/879
– volume: 2
  start-page: 57
  year: 2018
  ident: 7640_CR2
  publication-title: Kazanskii Vestn. Molodykh Uchenykh
– ident: 7640_CR10
  doi: 10.18653/v1/d16-1193
– ident: 7640_CR22
  doi: 10.1109/tale48000.2019.9226022
– ident: 7640_CR13
  doi: 10.1609/aaai.v32i1.12045
– volume: 55
  start-page: 321
  year: 2016
  ident: 7640_CR6
  publication-title: Hum. Resour. Manage.
  doi: 10.1002/hrm.21678
– volume-title: Automated essay scoring via example-based learning, Web Engineering. ICWE 2021
  year: 2021
  ident: 7640_CR15
  doi: 10.1007/978-3-030-74296-6_16
– volume-title: Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT)
  year: 2020
  ident: 7640_CR20
  doi: 10.5121/csit.2020.101211
– volume: 28
  start-page: 79
  year: 2018
  ident: 7640_CR9
  publication-title: Int. J. Artif. Intell. Educ.
  doi: 10.1007/s40593-017-0142-3
– ident: 7640_CR1
  doi: 10.24093/awej/covid2.1
– volume: 7
  start-page: 1
  year: 2022
  ident: 7640_CR4
  publication-title: J. Second Foreign Lang. Educ.
  doi: 10.1186/s40862-022-00135-8
– volume-title: Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020
  year: 2020
  ident: 7640_CR17
  doi: 10.18653/v1/2020.findings-emnlp.141
– ident: 7640_CR18
  doi: 10.18653/v1/2020.coling-main.535
– volume-title: MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf.
  year: 2022
  ident: 7640_CR23
– ident: 7640_CR16
  doi: 10.18653/v1/2020.bea-1.15
– volume: 4
  start-page: 83
  year: 2016
  ident: 7640_CR3
  publication-title: J. Educ. Soc. Sci.
  doi: 10.20547/jess0421604201
– ident: 7640_CR21
  doi: 10.1007/978-3-030-14118-9_57
SSID ssj0055886
Score 2.2583842
Snippet This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 828
SubjectTerms Algorithms
Automation
Communication
Computer Science
Control Structures and Microprogramming
Criteria
Deep learning
Dictionaries
English language
Error analysis
Essays
Foreign language learning
Graphical representations
Language proficiency
Machine learning
Morphology
Natural language processing
Neural networks
Parameters
Semantics
Sentences
Skills
Teachers
Texts
Writing
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMTKKqT2E4yVRWiYqqQWkS3yI8YIVVJaVN-Pz4noTxEF9YktpI753xnf_4-hK6ZMtJXWnmZoCEcybFxUDHpJRqKi0CHLNJObCIaDuPJJHmsF9wWNayyiYkuUOtCwRp5N7SVTExtnI17szcPVKNgd7WW0NhEW8CS4Dvo3qiJxIzFTukR-FE86vu82tUEZa0ugJo4XAMgNEDxv89Lq2Tzx_6om3YG-_994QO0VyecuF-NkEO0keVHaPcLDeEx6o1thMagijbFNofFNifE_WVZODZXPFIOo4cLgxuUPK4OAeFnYETKX07Q0-B-fPfg1cIKngp9XnpUEkqNoVz5keBEGWIyxnTMBZPGBIIbSWSQECEkt85UVBAhYxGIKJFCsyQ8Ra28yLMzhKlR9gtDLjMoTIgROsqY8KkKiOaRMG1EGrOmqmYdB_GLaWqrD_BE-ssTbXTz2WRWUW6se7jTWD-t_75FujJ9G902_lvd_rOz8_WdXaAdEJuvwCwd1Crny-wSbav38nUxv3JD7wP33NxH
  priority: 102
  providerName: ProQuest
Title Text Model for the Automatic Scoring of Business Letter Writing
URI https://link.springer.com/article/10.3103/S0146411623070167
https://www.proquest.com/docview/3254841238
Volume 57
WOSCitedRecordID wos001171290500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-4zYMenE7F6Sw5eFKKaZuk7UmmbAjCGNvU4aUkaSPC2GTr_PtN-uH8Br30kpdQXpL3wfvl_QBOqFTCkbG0E0488yRH20FJhR3GJrlwY4_6cUY24fd6wXgc9ot33IsS7V6WJDNLneWV2Ds3MCRGHIcZ6LIBz1egpr1dYPgaBsO70vxSGmT0jkbaNuJ5KfP7JT46o1WE-akomvmabv1ff7kNW0Voidr5WdiBtWTagHpJ24CKW9yAzXc9CHfhYqTNMzKUaBOkA1ikA0LUXqazrJWrnpQB9NBMoRIij_IXQOjetEOaPu7Bbbczurq2C1YFW3oOS20iMCFKESYdnzMsFVYJpXHAOBVKuZwpgYUbYs4F0zspCcdcBNzlfih4TENvH6rT2TQ5AESU1B7fYyIxWQlWPPYTyh0iXRwzn6sm4FK9kSxajhvmi0mkUw-jruiLuppw-jblOe-38Ztwq9yzqLh6i8jTKW9AtEMOmnBW7tFq-MfFDv8kfQQbhng-B7a0oJrOl8kxrMuX9Gkxt6B22en1BxZUbnzbMnjSof726YOVndVX2XXbjw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQAIO7Iiy-gAXUIST2E56QAixqFWhQqIIbsFLjJCqtrQFxE_xjXiShrIIbhy4ZrHkzPh5Jp55D2CLa6t8bbSXShZiS47DQc2VVzaYXAQm5JHJxCaiej2-uSlfjMBr0QuDZZUFJmZAbdoa_5HvhS6TiZnD2fig8-ChahSerhYSGrlb1NKXZ5ey9farx86-20FwetI4qngDVQFPh77oe0xRxqxlQvuRFFRbalPOTSwkV9YGUlhFVVCmUirhZqKZpFLFMpBRWUnDkXzJQf4YC-MI11Ut8grk5zzOlCWRj8Vjvi_yU1RU8trDIiqB17DwGkv_P--Dw-D2y3lsts2dzvy3DzQL04OAmhzmK2AORtLWPEx9oFlcgIOG24EIqr41iYvRiYt5yeFjv52x1ZJLndUgkrYlRRcAyZucyDUyPrXuFuHqT2awBKOtditdBsKsdl80FCrFxItaaaKUS5_pgBoRSVsCWpgx0QNWdRT3aCYuu0LLJ98sX4Kd91c6OaXIbw-vFdZOBujSS4amLsFu4S_D2z8OtvL7YJswUWmcnyVn1XptFSYDF87lhTtrMNrvPqbrMK6f-ve97kbm9gRu_9qN3gAi9Dzd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxXvPgk1KWtknaPslQh6IMwal7K7k0IoxubJ2_36QX5x3E556EcpKcC-c75wM4olILVyrpJJz4tiXH2EFJhRMpm1x4yqeByskmgm437Pej25LndFKh3auSZNHTYKc0pVlrpHQrzzGx37KQJEZcl1kYswXSz8MCsTh6m67fPVSmmNIwp3q00o4VL8qa32_x0THNos1PBdLc73Tq__7jNVgtQ07ULu7IOswlaQPqFZ0DKl93A1bezSbcgNOeMdvIUqUNkAlskQkUUXuaDfMRr2ZRDtxDQ40q6DwqOoPQox2TlD5twn3nond26ZRsC470XZY5RGBCtCZMugFnWGqsE0pVyDgVWnucaYGFF2HOBTMnLAnHXITc40EkuKKRvwW1dJgm24CIliYS8JlIbLaCNVdBQrlLpIcVC7huAq5UHctyFLllxBjEJiWx6oq_qKsJx29LRsUcjt-E96rzi8snOYl9kwqHxDjqsAkn1XnNPv-42c6fpA9h6fa8E99cda93Ydly0xfYlz2oZeNpsg-L8iV7nowP8ov6CgFA4vU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Model+for+the+Automatic+Scoring+of+Business+Letter+Writing&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Zafievsky%2C+D.+D.&rft.au=Lagutina%2C+N.+S.&rft.au=Melnikova%2C+O.+A.&rft.au=Poletaev%2C+A.+Y.&rft.date=2023-12-01&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=57&rft.issue=7&rft.spage=828&rft.epage=840&rft_id=info:doi/10.3103%2FS0146411623070167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0146411623070167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon