Text Model for the Automatic Scoring of Business Letter Writing
This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the an...
Uložené v:
| Vydané v: | Automatic control and computer sciences Ročník 57; číslo 7; s. 828 - 840 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0146-4116, 1558-108X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects. |
|---|---|
| AbstractList | This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects. This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated and formalized in the form of 14 criteria with the help of expert English language teachers. The criteria include parameters related to the analysis of vocabulary, including the features of the data domain, text subject, writing style and format, and logical connection in sentences. The authors have developed algorithms for determining the corresponding numerical characteristics using methods and tools for automatic text analysis. The algorithms are based on the analysis of the composition and structure of sentences, using data from specialized dictionaries. The characteristics are focused on checking business e-mails, but can be adapted to the analysis of other written texts, for example, by replacing dictionaries. Based on the developed algorithms, a system for automatic text scoring is created. An experiment is carried out to analyze the results of this system’s operation on a corpus of 20 texts, previously marked up by English teachers. Automatic scoring and the scoring of experts are compared using heat maps and the the UMAP two-dimensional representation of vectors applied to the characteristic text vectors. In most cases, there are no significant differences between the scores; moreover, automatic scoring turns out to be more objective. Thus, the developed model successfully copes with this task and can be used to evaluate texts written by humans. The results will be used for automatic student language profiling. The advantages of the model lie in the good interpretability of the results, credibility, and development prospects. |
| Author | Poletaev, A. Y. Lagutina, N. S. Zafievsky, D. D. Melnikova, O. A. |
| Author_xml | – sequence: 1 givenname: D. D. orcidid: 0000-0001-8266-2283 surname: Zafievsky fullname: Zafievsky, D. D. organization: Demidov Yaroslavl State University – sequence: 2 givenname: N. S. orcidid: 0000-0002-6137-8643 surname: Lagutina fullname: Lagutina, N. S. email: lagutinans@gmail.com organization: Demidov Yaroslavl State University – sequence: 3 givenname: O. A. orcidid: 0000-0001-8814-7696 surname: Melnikova fullname: Melnikova, O. A. organization: Demidov Yaroslavl State University – sequence: 4 givenname: A. Y. orcidid: 0000-0003-0116-4739 surname: Poletaev fullname: Poletaev, A. Y. organization: Demidov Yaroslavl State University |
| BookMark | eNp9kMtKAzEUhoNUsFYfwF3A9ejJddKV1OINKi5a0d2QpIlOaSc1yYC-vTNUEBRdncV3vnP5D9GgCY1D6ITAGSPAzudAuOSESMqgBCLLPTQkQqiCgHoeoGGPi54foMOUVgAdU3KILhbuPeP7sHRr7EPE-dXhSZvDRufa4rkNsW5ecPD4sk1141LCM5ezi_gp1rlDR2jf63Vyx191hB6vrxbT22L2cHM3ncwKy4jMBTfAufdcWlJqCdaDd0IsldTCeE-19AYMHYPWRgrrLdegjdJUl2Ojl2LMRuh0N3cbw1vrUq5WoY1Nt7JiVHDFCWWq6yK7LhtDStH5ahvrjY4fFYGqz6n6lVPnlD8cW-fu-9DkqOv1vybdmWnbp-Ti901_S5-PoXxt |
| CitedBy_id | crossref_primary_10_18255_1818_1015_2025_1_42_65 |
| Cites_doi | 10.1007/s41237-021-00142-y 10.1007/978-3-030-52237-7_44 10.18653/v1/n18-1024 10.1007/s10462-021-10068-2 10.7717/peerj-cs.208 10.1007/978-3-030-78270-2_9 10.1145/3374587.3374596 10.24963/ijcai.2019/879 10.18653/v1/d16-1193 10.1109/tale48000.2019.9226022 10.1609/aaai.v32i1.12045 10.1002/hrm.21678 10.1007/978-3-030-74296-6_16 10.5121/csit.2020.101211 10.1007/s40593-017-0142-3 10.24093/awej/covid2.1 10.1186/s40862-022-00135-8 10.18653/v1/2020.findings-emnlp.141 10.18653/v1/2020.coling-main.535 10.18653/v1/2020.bea-1.15 10.20547/jess0421604201 10.1007/978-3-030-14118-9_57 |
| ContentType | Journal Article |
| Copyright | Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 7, pp. 828–840. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2022, Vol. 29, No. 4, pp. 348–365. Allerton Press, Inc. 2023. |
| Copyright_xml | – notice: Allerton Press, Inc. 2023. ISSN 0146-4116, Automatic Control and Computer Sciences, 2023, Vol. 57, No. 7, pp. 828–840. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2022, Vol. 29, No. 4, pp. 348–365. – notice: Allerton Press, Inc. 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3103/S0146411623070167 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-108X |
| EndPage | 840 |
| ExternalDocumentID | 10_3103_S0146411623070167 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9O PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 XU3 YLTOR Z7R Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-4b044ff46c17a60cf0fe55d86a5bff2a6fb0b290aab65cfc4a0ab8a2a79bad593 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171290500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0146-4116 |
| IngestDate | Sun Sep 28 03:49:29 EDT 2025 Tue Nov 18 22:27:59 EST 2025 Sat Nov 29 05:52:12 EST 2025 Fri Feb 21 02:40:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | automatic text processing automated essay scoring business letter writing text options |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-4b044ff46c17a60cf0fe55d86a5bff2a6fb0b290aab65cfc4a0ab8a2a79bad593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8814-7696 0000-0003-0116-4739 0000-0002-6137-8643 0000-0001-8266-2283 |
| PQID | 3254841238 |
| PQPubID | 2043879 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3254841238 crossref_primary_10_3103_S0146411623070167 crossref_citationtrail_10_3103_S0146411623070167 springer_journals_10_3103_S0146411623070167 |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Automatic control and computer sciences |
| PublicationTitleAbbrev | Aut. Control Comp. Sci |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | Al-Bargi, A., Exploring online writing assessment amid Covid-19: Challenges and opportunities from teachers’ perspectives, Arab World Engl. J., 2022, no. 2, pp. 3–21. https://doi.org/10.24093/awej/covid2.1 Salim, Ya., Stevanus, V., Barlian, E., Sari, A., and Suhartono, D., Automated English digital essay grader using machine learning, 2019 IEEE Int. Conf. on Engineering, Technology and Education (TALE), Yogyakarta, Indonesia, 2019, IEEE, 2019, pp. 1–6. https://doi.org/10.1109/tale48000.2019.9226022 Farag, Yo., Yannakoudakis, H., and Briscoe, T., Neural automated essay scoring and coherence modeling for adversarially crafted input, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Walker, M., Ji, H., and Stent, A., Eds., New Orleans: Association for Computational Linguistics, 2018, vol. 1, pp. 263–271. https://doi.org/10.18653/v1/n18-1024 UtoM.A review of deep-neural automated essay scoring modelsBehaviormetrika20214845948410.1007/s41237-021-00142-y Xia, L., Liu, J., and Zhang, Z., Automatic essay scoring model based on two-layer bi-directional long-short term memory network, Proc. 2019 3rd Int. Conf. on Computer Science and Artificial Intelligence, Normal, Ill., 2019, New York: Association for Computing Machinery, 2019, pp. 133–137. https://doi.org/10.1145/3374587.3374596 John BernardinH.ThomasonS.Ronald BuckleyM.KaneJ.Rater rating-level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountabilityHum. Resour. Manage.20165532134010.1002/hrm.21678 Mayfield, E. and Black, A.W., Should you fine-tune BERT for automated essay scoring?, Proc. Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, Burstein, J., Kochmar, E., Leacock, C., et al., Eds., Seattle, Wash.: Association for Computational Linguistics, 2020, pp. 151–162. https://doi.org/10.18653/v1/2020.bea-1.15 Ke, Z. and Ng, V., Automated essay scoring: A survey of the state of the art, Proc. Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, 2019, vol. 19, pp. 6300–6308. https://doi.org/10.24963/ijcai.2019/879 Tay, Yi., Phan, M., Tuan, L., and Hui, S., SkipFlow: Incorporating neural coherence features for end-to-end automatic text scoring, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5948–5955. https://doi.org/10.1609/aaai.v32i1.12045 ZhuW.SunYu.Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT)202010.5121/csit.2020.101211 Taghipour, K. and Ng, H., A neural approach to automated essay scoring, Proc. 2016 Conf. on Empirical Methods in Natural Language Processing, Su, J., Duh, K., and Carreras, X., Eds., Austin, Texas: Association for Computational Linguistics, 2016, pp. 1882–1891. https://doi.org/10.18653/v1/d16-1193 WilkensR.SeibertD.WangX.Franc¸oisT.MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf.2022MarseilleEuropean Language Resources Association RameshD.SanampudiS.K.An automated essay scoring systems: A systematic literature reviewArtif. Intell. Rev.2021552495252710.1007/s10462-021-10068-2345843258460059 VajjalaS.Automated assessment of non-native learner essays: Investigating the role of linguistic featuresInt. J. Artif. Intell. Educ.2018287910510.1007/s40593-017-0142-3 Uto, M., Xie, Yi., and Ueno, M., Neural automated essay scoring incorporating handcrafted features, Proc. 28th Int. Conf. on Computational Linguistics, Scott, D., Bel, N., and Zong, Ch., Eds., Barcelona: International Committee on Computational Linguistics, 2020, pp. 6077–6088. https://doi.org/10.18653/v1/2020.coling-main.535 AomiI.TsutsumiE.UtoM.UenoM.Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D.2021ChamSpringer10.1007/978-3-030-78270-2_9 HusseinM.A.HassanH.NassefM.Automated language essay scoring systems: A literature reviewPeerJ Comput. Sci.20195e20810.7717/peerj-cs.208338168617924549 YangYu.ZhongJ.Automated essay scoring via example-based learning, Web Engineering. ICWE 20212021ChamSpringer10.1007/978-3-030-74296-6_16 SobolevaN.P.NilovaM.A.Teaching writing to students of humanitarian specialties using modern educational technologiesKazanskii Vestn. Molodykh Uchenykh201825759 UtoM.OkanoM.Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 20202020ChamSpringer10.1007/978-3-030-52237-7_44 Al-MwzaijiKh.N.A.AlzubiA.A.F.Online self-evaluation: The EFL writing skills in focus, Asian-Pac.J. Second Foreign Lang. Educ.2022711610.1186/s40862-022-00135-8 FareedM.AshrafA.BilalM.ESL learners' writing skills: Problems, factors and suggestionsJ. Educ. Soc. Sci.20164839410.20547/jess0421604201 YangR.CaoJ.WenZ.WuYo.HeX.Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020202010.18653/v1/2020.findings-emnlp.141 Darwish, S.M. and Mohamed, S.K., Automated essay evaluation based on fusion of fuzzy ontology and latent semantic analysis, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019, Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., and Tolba, M.F., Eds., Advances in Intelligent Systems and Computing, Cham: Springer, 2019, pp. 566–575. https://doi.org/10.1007/978-3-030-14118-9_57 7640_CR18 7640_CR16 7640_CR1 M.A. Hussein (7640_CR5) 2019; 5 R. Wilkens (7640_CR23) 2022 I. Aomi (7640_CR19) 2021 7640_CR10 M. Uto (7640_CR12) 2020 7640_CR21 7640_CR11 7640_CR22 S. Vajjala (7640_CR9) 2018; 28 7640_CR14 H. John Bernardin (7640_CR6) 2016; 55 7640_CR13 N.P. Soboleva (7640_CR2) 2018; 2 D. Ramesh (7640_CR24) 2021; 55 M. Uto (7640_CR8) 2021; 48 Yu. Yang (7640_CR15) 2021 R. Yang (7640_CR17) 2020 Kh.N.A. Al-Mwzaiji (7640_CR4) 2022; 7 7640_CR7 M. Fareed (7640_CR3) 2016; 4 W. Zhu (7640_CR20) 2020 |
| References_xml | – reference: VajjalaS.Automated assessment of non-native learner essays: Investigating the role of linguistic featuresInt. J. Artif. Intell. Educ.2018287910510.1007/s40593-017-0142-3 – reference: Farag, Yo., Yannakoudakis, H., and Briscoe, T., Neural automated essay scoring and coherence modeling for adversarially crafted input, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Walker, M., Ji, H., and Stent, A., Eds., New Orleans: Association for Computational Linguistics, 2018, vol. 1, pp. 263–271. https://doi.org/10.18653/v1/n18-1024 – reference: YangR.CaoJ.WenZ.WuYo.HeX.Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020202010.18653/v1/2020.findings-emnlp.141 – reference: SobolevaN.P.NilovaM.A.Teaching writing to students of humanitarian specialties using modern educational technologiesKazanskii Vestn. Molodykh Uchenykh201825759 – reference: Taghipour, K. and Ng, H., A neural approach to automated essay scoring, Proc. 2016 Conf. on Empirical Methods in Natural Language Processing, Su, J., Duh, K., and Carreras, X., Eds., Austin, Texas: Association for Computational Linguistics, 2016, pp. 1882–1891. https://doi.org/10.18653/v1/d16-1193 – reference: ZhuW.SunYu.Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT)202010.5121/csit.2020.101211 – reference: Al-Bargi, A., Exploring online writing assessment amid Covid-19: Challenges and opportunities from teachers’ perspectives, Arab World Engl. J., 2022, no. 2, pp. 3–21. https://doi.org/10.24093/awej/covid2.1 – reference: YangYu.ZhongJ.Automated essay scoring via example-based learning, Web Engineering. ICWE 20212021ChamSpringer10.1007/978-3-030-74296-6_16 – reference: Al-MwzaijiKh.N.A.AlzubiA.A.F.Online self-evaluation: The EFL writing skills in focus, Asian-Pac.J. Second Foreign Lang. Educ.2022711610.1186/s40862-022-00135-8 – reference: John BernardinH.ThomasonS.Ronald BuckleyM.KaneJ.Rater rating-level bias and accuracy in performance appraisals: The impact of rater personality, performance management competence, and rater accountabilityHum. Resour. Manage.20165532134010.1002/hrm.21678 – reference: FareedM.AshrafA.BilalM.ESL learners' writing skills: Problems, factors and suggestionsJ. Educ. Soc. Sci.20164839410.20547/jess0421604201 – reference: AomiI.TsutsumiE.UtoM.UenoM.Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D.2021ChamSpringer10.1007/978-3-030-78270-2_9 – reference: Xia, L., Liu, J., and Zhang, Z., Automatic essay scoring model based on two-layer bi-directional long-short term memory network, Proc. 2019 3rd Int. Conf. on Computer Science and Artificial Intelligence, Normal, Ill., 2019, New York: Association for Computing Machinery, 2019, pp. 133–137. https://doi.org/10.1145/3374587.3374596 – reference: Darwish, S.M. and Mohamed, S.K., Automated essay evaluation based on fusion of fuzzy ontology and latent semantic analysis, The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019, Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., and Tolba, M.F., Eds., Advances in Intelligent Systems and Computing, Cham: Springer, 2019, pp. 566–575. https://doi.org/10.1007/978-3-030-14118-9_57 – reference: HusseinM.A.HassanH.NassefM.Automated language essay scoring systems: A literature reviewPeerJ Comput. Sci.20195e20810.7717/peerj-cs.208338168617924549 – reference: Ke, Z. and Ng, V., Automated essay scoring: A survey of the state of the art, Proc. Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, 2019, vol. 19, pp. 6300–6308. https://doi.org/10.24963/ijcai.2019/879 – reference: Tay, Yi., Phan, M., Tuan, L., and Hui, S., SkipFlow: Incorporating neural coherence features for end-to-end automatic text scoring, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5948–5955. https://doi.org/10.1609/aaai.v32i1.12045 – reference: WilkensR.SeibertD.WangX.Franc¸oisT.MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf.2022MarseilleEuropean Language Resources Association – reference: Mayfield, E. and Black, A.W., Should you fine-tune BERT for automated essay scoring?, Proc. Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, Burstein, J., Kochmar, E., Leacock, C., et al., Eds., Seattle, Wash.: Association for Computational Linguistics, 2020, pp. 151–162. https://doi.org/10.18653/v1/2020.bea-1.15 – reference: UtoM.A review of deep-neural automated essay scoring modelsBehaviormetrika20214845948410.1007/s41237-021-00142-y – reference: RameshD.SanampudiS.K.An automated essay scoring systems: A systematic literature reviewArtif. Intell. Rev.2021552495252710.1007/s10462-021-10068-2345843258460059 – reference: Uto, M., Xie, Yi., and Ueno, M., Neural automated essay scoring incorporating handcrafted features, Proc. 28th Int. Conf. on Computational Linguistics, Scott, D., Bel, N., and Zong, Ch., Eds., Barcelona: International Committee on Computational Linguistics, 2020, pp. 6077–6088. https://doi.org/10.18653/v1/2020.coling-main.535 – reference: UtoM.OkanoM.Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 20202020ChamSpringer10.1007/978-3-030-52237-7_44 – reference: Salim, Ya., Stevanus, V., Barlian, E., Sari, A., and Suhartono, D., Automated English digital essay grader using machine learning, 2019 IEEE Int. Conf. on Engineering, Technology and Education (TALE), Yogyakarta, Indonesia, 2019, IEEE, 2019, pp. 1–6. https://doi.org/10.1109/tale48000.2019.9226022 – volume: 48 start-page: 459 year: 2021 ident: 7640_CR8 publication-title: Behaviormetrika doi: 10.1007/s41237-021-00142-y – volume-title: Robust neural automated essay scoring using item response theory, Artificial Intelligence in Education. AIED 2020 year: 2020 ident: 7640_CR12 doi: 10.1007/978-3-030-52237-7_44 – ident: 7640_CR14 doi: 10.18653/v1/n18-1024 – volume: 55 start-page: 2495 year: 2021 ident: 7640_CR24 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10068-2 – volume: 5 start-page: e208 year: 2019 ident: 7640_CR5 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.208 – volume-title: Integration of automated essay scoring models using item response theory, Artificial Intelligence in Education. AIED 2021, Roll, I., McNamara, D. year: 2021 ident: 7640_CR19 doi: 10.1007/978-3-030-78270-2_9 – ident: 7640_CR11 doi: 10.1145/3374587.3374596 – ident: 7640_CR7 doi: 10.24963/ijcai.2019/879 – volume: 2 start-page: 57 year: 2018 ident: 7640_CR2 publication-title: Kazanskii Vestn. Molodykh Uchenykh – ident: 7640_CR10 doi: 10.18653/v1/d16-1193 – ident: 7640_CR22 doi: 10.1109/tale48000.2019.9226022 – ident: 7640_CR13 doi: 10.1609/aaai.v32i1.12045 – volume: 55 start-page: 321 year: 2016 ident: 7640_CR6 publication-title: Hum. Resour. Manage. doi: 10.1002/hrm.21678 – volume-title: Automated essay scoring via example-based learning, Web Engineering. ICWE 2021 year: 2021 ident: 7640_CR15 doi: 10.1007/978-3-030-74296-6_16 – volume-title: Automated essay scoring system using multi-model machine learning, Computer Science & Information Technology (CS & IT) year: 2020 ident: 7640_CR20 doi: 10.5121/csit.2020.101211 – volume: 28 start-page: 79 year: 2018 ident: 7640_CR9 publication-title: Int. J. Artif. Intell. Educ. doi: 10.1007/s40593-017-0142-3 – ident: 7640_CR1 doi: 10.24093/awej/covid2.1 – volume: 7 start-page: 1 year: 2022 ident: 7640_CR4 publication-title: J. Second Foreign Lang. Educ. doi: 10.1186/s40862-022-00135-8 – volume-title: Enhancing automated essay scoring performance via fine-tuning pre-trained language models with combination of regression and ranking, Findings of the Association for Computational Linguistics: EMNLP 2020 year: 2020 ident: 7640_CR17 doi: 10.18653/v1/2020.findings-emnlp.141 – ident: 7640_CR18 doi: 10.18653/v1/2020.coling-main.535 – volume-title: MWE for essay scoring English as a foreign language, Proc. 2nd Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI) within the 13th Language Resources and Evaluation Conf. year: 2022 ident: 7640_CR23 – ident: 7640_CR16 doi: 10.18653/v1/2020.bea-1.15 – volume: 4 start-page: 83 year: 2016 ident: 7640_CR3 publication-title: J. Educ. Soc. Sci. doi: 10.20547/jess0421604201 – ident: 7640_CR21 doi: 10.1007/978-3-030-14118-9_57 |
| SSID | ssj0055886 |
| Score | 2.2583842 |
| Snippet | This article describes a text model designed to automatically score a cohesive text in the form of a letter on a theme. The scoring parameters are formulated... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 828 |
| SubjectTerms | Algorithms Automation Communication Computer Science Control Structures and Microprogramming Criteria Deep learning Dictionaries English language Error analysis Essays Foreign language learning Graphical representations Language proficiency Machine learning Morphology Natural language processing Neural networks Parameters Semantics Sentences Skills Teachers Texts Writing |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMTKKqT2E4yVRWiYqqQWkS3yI8YIVVJaVN-Pz4noTxEF9YktpI753xnf_4-hK6ZMtJXWnmZoCEcybFxUDHpJRqKi0CHLNJObCIaDuPJJHmsF9wWNayyiYkuUOtCwRp5N7SVTExtnI17szcPVKNgd7WW0NhEW8CS4Dvo3qiJxIzFTukR-FE86vu82tUEZa0ugJo4XAMgNEDxv89Lq2Tzx_6om3YG-_994QO0VyecuF-NkEO0keVHaPcLDeEx6o1thMagijbFNofFNifE_WVZODZXPFIOo4cLgxuUPK4OAeFnYETKX07Q0-B-fPfg1cIKngp9XnpUEkqNoVz5keBEGWIyxnTMBZPGBIIbSWSQECEkt85UVBAhYxGIKJFCsyQ8Ra28yLMzhKlR9gtDLjMoTIgROsqY8KkKiOaRMG1EGrOmqmYdB_GLaWqrD_BE-ssTbXTz2WRWUW6se7jTWD-t_75FujJ9G902_lvd_rOz8_WdXaAdEJuvwCwd1Crny-wSbav38nUxv3JD7wP33NxH priority: 102 providerName: ProQuest |
| Title | Text Model for the Automatic Scoring of Business Letter Writing |
| URI | https://link.springer.com/article/10.3103/S0146411623070167 https://www.proquest.com/docview/3254841238 |
| Volume | 57 |
| WOSCitedRecordID | wos001171290500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1558-108X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1558-108X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1558-108X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1558-108X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1558-108X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055886 issn: 0146-4116 databaseCode: RSV dateStart: 20070201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-4zYMenE7F6Sw5eFKKaZuk7UmmbAjCGNvU4aUkaSPC2GTr_PtN-uH8Br30kpdQXpL3wfvl_QBOqFTCkbG0E0488yRH20FJhR3GJrlwY4_6cUY24fd6wXgc9ot33IsS7V6WJDNLneWV2Ds3MCRGHIcZ6LIBz1egpr1dYPgaBsO70vxSGmT0jkbaNuJ5KfP7JT46o1WE-akomvmabv1ff7kNW0Voidr5WdiBtWTagHpJ24CKW9yAzXc9CHfhYqTNMzKUaBOkA1ikA0LUXqazrJWrnpQB9NBMoRIij_IXQOjetEOaPu7Bbbczurq2C1YFW3oOS20iMCFKESYdnzMsFVYJpXHAOBVKuZwpgYUbYs4F0zspCcdcBNzlfih4TENvH6rT2TQ5AESU1B7fYyIxWQlWPPYTyh0iXRwzn6sm4FK9kSxajhvmi0mkUw-jruiLuppw-jblOe-38Ztwq9yzqLh6i8jTKW9AtEMOmnBW7tFq-MfFDv8kfQQbhng-B7a0oJrOl8kxrMuX9Gkxt6B22en1BxZUbnzbMnjSof726YOVndVX2XXbjw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQAIO7Iiy-gAXUIST2E56QAixqFWhQqIIbsFLjJCqtrQFxE_xjXiShrIIbhy4ZrHkzPh5Jp55D2CLa6t8bbSXShZiS47DQc2VVzaYXAQm5JHJxCaiej2-uSlfjMBr0QuDZZUFJmZAbdoa_5HvhS6TiZnD2fig8-ChahSerhYSGrlb1NKXZ5ey9farx86-20FwetI4qngDVQFPh77oe0xRxqxlQvuRFFRbalPOTSwkV9YGUlhFVVCmUirhZqKZpFLFMpBRWUnDkXzJQf4YC-MI11Ut8grk5zzOlCWRj8Vjvi_yU1RU8trDIiqB17DwGkv_P--Dw-D2y3lsts2dzvy3DzQL04OAmhzmK2AORtLWPEx9oFlcgIOG24EIqr41iYvRiYt5yeFjv52x1ZJLndUgkrYlRRcAyZucyDUyPrXuFuHqT2awBKOtditdBsKsdl80FCrFxItaaaKUS5_pgBoRSVsCWpgx0QNWdRT3aCYuu0LLJ98sX4Kd91c6OaXIbw-vFdZOBujSS4amLsFu4S_D2z8OtvL7YJswUWmcnyVn1XptFSYDF87lhTtrMNrvPqbrMK6f-ve97kbm9gRu_9qN3gAi9Dzd |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxXvPgk1KWtknaPslQh6IMwal7K7k0IoxubJ2_36QX5x3E556EcpKcC-c75wM4olILVyrpJJz4tiXH2EFJhRMpm1x4yqeByskmgm437Pej25LndFKh3auSZNHTYKc0pVlrpHQrzzGx37KQJEZcl1kYswXSz8MCsTh6m67fPVSmmNIwp3q00o4VL8qa32_x0THNos1PBdLc73Tq__7jNVgtQ07ULu7IOswlaQPqFZ0DKl93A1bezSbcgNOeMdvIUqUNkAlskQkUUXuaDfMRr2ZRDtxDQ40q6DwqOoPQox2TlD5twn3nond26ZRsC470XZY5RGBCtCZMugFnWGqsE0pVyDgVWnucaYGFF2HOBTMnLAnHXITc40EkuKKRvwW1dJgm24CIliYS8JlIbLaCNVdBQrlLpIcVC7huAq5UHctyFLllxBjEJiWx6oq_qKsJx29LRsUcjt-E96rzi8snOYl9kwqHxDjqsAkn1XnNPv-42c6fpA9h6fa8E99cda93Ydly0xfYlz2oZeNpsg-L8iV7nowP8ov6CgFA4vU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+Model+for+the+Automatic+Scoring+of+Business+Letter+Writing&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Zafievsky%2C+D.+D.&rft.au=Lagutina%2C+N.+S.&rft.au=Melnikova%2C+O.+A.&rft.au=Poletaev%2C+A.+Y.&rft.date=2023-12-01&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=57&rft.issue=7&rft.spage=828&rft.epage=840&rft_id=info:doi/10.3103%2FS0146411623070167&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0146411623070167 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon |