Recursive Bayesian Algorithm for Identification of Systems with Non-uniformly Sampled Input Data
To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system with colored noise is transformed into the system with white noise. In order to impr...
Uloženo v:
| Vydáno v: | Machine intelligence research (Print) Ročník 15; číslo 3; s. 335 - 344 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Springer Nature B.V
01.06.2018
|
| Témata: | |
| ISSN: | 2153-182X, 2153-1838 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To identify systems with non-uniformly sampled input data, a recursive Bayesian identification algorithm with covariance resetting is proposed. Using estimated noise transfer function as a dynamic filter, the system with colored noise is transformed into the system with white noise. In order to improve estimates, the estimated noise variance is employed as a weighting factor in the algorithm. Meanwhile, a modified covariance resetting method is also integrated in the proposed algorithm to increase the convergence rate. A numerical example and an industrial example validate the proposed algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2153-182X 2153-1838 |
| DOI: | 10.1007/s11633-017-1073-z |