An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh

The present work considers a nonlinear system of singularly perturbed delay differential equation whose each component of the solution has multiple layers. Here, we provide an a posteriori based convergence analysis for the adaptation of these layer phenomena. We derive a parameter uniform a posteri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 81; číslo 2; s. 465 - 487
Hlavní autor: Das, Pratibhamoy
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2019
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The present work considers a nonlinear system of singularly perturbed delay differential equation whose each component of the solution has multiple layers. Here, we provide an a posteriori based convergence analysis for the adaptation of these layer phenomena. We derive a parameter uniform a posteriori error estimate which will lead to a layer adaptive mesh by moving a fixed number of mesh points. It is theoretically shown that the layer adaptive solution on the a posteriori generated mesh will uniformly converge to the exact solution with optimal order accuracy where the optimality is measured with respect to the continuous problem discretization. The comparison results with the existing methods based on a priori meshes show that the proposed method on the a posteriori mesh is highly effective.
AbstractList The present work considers a nonlinear system of singularly perturbed delay differential equation whose each component of the solution has multiple layers. Here, we provide an a posteriori based convergence analysis for the adaptation of these layer phenomena. We derive a parameter uniform a posteriori error estimate which will lead to a layer adaptive mesh by moving a fixed number of mesh points. It is theoretically shown that the layer adaptive solution on the a posteriori generated mesh will uniformly converge to the exact solution with optimal order accuracy where the optimality is measured with respect to the continuous problem discretization. The comparison results with the existing methods based on a priori meshes show that the proposed method on the a posteriori mesh is highly effective.
Author Das, Pratibhamoy
Author_xml – sequence: 1
  givenname: Pratibhamoy
  surname: Das
  fullname: Das, Pratibhamoy
  email: pratibhamoy@gmail.com, pratibhamoy@iitp.ac.in
  organization: Department of Mathematics, Indian Institute of Technology
BookMark eNp9kM1q3TAQhUVIIT_tA3Qn6NqN5D9ZyxCSJhDoJnsxlke3Cr6SM5IDfoU8dZTeQiCQgkBncb45M-eMHYcYkLHvUvyUQqiLJKVQXSXkUImuU1V7xE5lp-pK1313XLSQqpKNHk7YWUqPQhSqVqfs5TJw4EtMGclH8nyEhBO3MTwj7TBY5BBg3pJP3EUq3hI8-4BAPPmwW2egeeMLUl5pLGTayqg9j45POMPGJ-8cEobsYeb4tEL2MSQeS2x5EyzZPyPfY_rzlX1xMCf89u8_Zw831w9Xt9X97193V5f3lW1kn6u2G1QR1ko9tbYH6EfhdKtbN41WWatLnlYAWITWnZjG1iqntBu0lV3dnLMfh7ELxacVUzaPcaVyYzK1lkPfN7puikseXJZiSoTOLOT3QJuRwrw1bg6Nm9K4eWvctIVRHxjr8997M4Gf_0vWBzKVlLBDet_pc-gVVhaa9A
CitedBy_id crossref_primary_10_1007_s10910_020_01190_7
crossref_primary_10_1007_s12190_021_01613_x
crossref_primary_10_1002_mma_10070
crossref_primary_10_1016_j_cam_2020_113116
crossref_primary_10_1016_j_apnum_2024_09_020
crossref_primary_10_1016_j_cam_2020_113115
crossref_primary_10_1002_mma_10393
crossref_primary_10_1111_sapm_12763
crossref_primary_10_1007_s12190_024_02226_w
crossref_primary_10_1007_s10910_024_01634_4
crossref_primary_10_1007_s10910_024_01638_0
crossref_primary_10_3390_sym12010136
crossref_primary_10_1002_mma_10358
crossref_primary_10_1002_mma_7369
crossref_primary_10_1016_j_apnum_2022_11_003
crossref_primary_10_1155_2020_8829092
crossref_primary_10_1007_s13137_019_0129_3
crossref_primary_10_1007_s40010_020_00723_8
crossref_primary_10_1007_s12190_024_02312_z
crossref_primary_10_1080_15502287_2021_1948148
crossref_primary_10_3934_nhm_2025024
crossref_primary_10_1007_s40819_023_01543_1
crossref_primary_10_1007_s11075_018_00652_z
crossref_primary_10_1007_s11766_024_4148_y
crossref_primary_10_1007_s13137_023_00222_z
crossref_primary_10_1140_epjs_s11734_024_01267_3
crossref_primary_10_1016_j_bulsci_2025_103637
crossref_primary_10_1002_fld_5201
crossref_primary_10_1016_j_apnum_2023_10_003
crossref_primary_10_1002_mma_10461
crossref_primary_10_1002_mma_9460
crossref_primary_10_1016_j_cam_2025_116797
crossref_primary_10_1016_j_cam_2025_116754
crossref_primary_10_1002_mma_9381
crossref_primary_10_1016_j_compbiomed_2024_108756
crossref_primary_10_1002_mma_10464
crossref_primary_10_1007_s10910_022_01393_0
crossref_primary_10_1007_s13398_023_01397_8
crossref_primary_10_1007_s12190_024_02252_8
crossref_primary_10_1002_mma_10986
crossref_primary_10_1016_j_amc_2020_125677
crossref_primary_10_1016_j_camwa_2025_05_019
crossref_primary_10_1002_mma_10984
crossref_primary_10_1007_s11075_019_00795_7
crossref_primary_10_1002_mma_7358
crossref_primary_10_1002_mma_9778
crossref_primary_10_1016_j_chaos_2025_116456
crossref_primary_10_1080_00207160_2019_1673892
crossref_primary_10_1007_s40314_021_01733_x
crossref_primary_10_1007_s12190_024_02173_6
crossref_primary_10_1140_epjs_s11734_024_01254_8
crossref_primary_10_1007_s12190_023_01900_9
crossref_primary_10_1016_j_matcom_2021_05_005
crossref_primary_10_1007_s12591_022_00593_z
crossref_primary_10_1002_cmm4_1047
crossref_primary_10_1002_cmm4_1201
crossref_primary_10_1002_fld_5294
crossref_primary_10_1016_j_apnum_2019_08_028
crossref_primary_10_1108_EC_08_2018_0337
crossref_primary_10_1016_j_apnum_2024_09_001
crossref_primary_10_1080_02331934_2025_2534119
crossref_primary_10_1155_2020_4879723
crossref_primary_10_1016_j_amc_2021_126385
crossref_primary_10_1016_j_matcom_2022_02_018
crossref_primary_10_1007_s12190_025_02601_1
crossref_primary_10_1007_s40010_020_00687_9
crossref_primary_10_1016_j_matcom_2025_02_023
crossref_primary_10_1080_27684830_2023_2286670
crossref_primary_10_1155_2022_9291834
crossref_primary_10_1002_mma_10018
crossref_primary_10_1007_s11144_024_02570_9
crossref_primary_10_1007_s40863_024_00424_9
crossref_primary_10_1007_s40010_023_00852_w
crossref_primary_10_1007_s00500_023_08057_4
crossref_primary_10_1002_mma_7904
crossref_primary_10_1007_s11075_021_01205_7
crossref_primary_10_1007_s12190_023_01977_2
crossref_primary_10_1186_s13660_024_03235_w
crossref_primary_10_1016_j_matcom_2021_10_029
crossref_primary_10_1515_nleng_2024_0074
crossref_primary_10_1007_s40314_022_01928_w
crossref_primary_10_1016_j_camwa_2023_04_004
crossref_primary_10_1016_j_camwa_2023_09_008
crossref_primary_10_1007_s12591_024_00699_6
crossref_primary_10_1080_10236198_2022_2062235
crossref_primary_10_1515_nleng_2024_0070
crossref_primary_10_1007_s12190_020_01396_7
crossref_primary_10_1007_s11075_021_01147_0
crossref_primary_10_1016_j_cam_2023_115441
crossref_primary_10_1016_j_cam_2020_113167
crossref_primary_10_3390_app10145019
crossref_primary_10_1007_s11144_023_02546_1
crossref_primary_10_1007_s12591_021_00577_5
crossref_primary_10_1007_s11075_024_01918_5
crossref_primary_10_1007_s11075_024_01804_0
crossref_primary_10_1016_j_camwa_2023_09_013
Cites_doi 10.1090/S0025-5718-08-02125-X
10.1137/S0036139992228119
10.1016/S0022-247X(03)00193-8
10.1007/978-1-4419-7916-2
10.1137/S003614290138471X
10.1080/10236190903305450
10.1016/j.cam.2010.05.006
10.1007/s10543-015-0577-6
10.1093/imanum/21.1.349
10.1007/s11075-009-9306-z
10.1093/imanum/drp052
10.1016/S0168-9274(99)00065-3
10.1007/s10543-015-0559-8
10.1137/S0036142900368642
10.1007/s11075-005-7079-6
10.1016/j.camwa.2006.07.009
10.1137/S0036139992228120
10.1016/j.cam.2017.11.026
10.1080/00207160.2016.1184263
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-018-0557-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 487
ExternalDocumentID 10_1007_s11075_018_0557_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARAPS
ATHPR
AYFIA
BBWZM
BENPR
BGLVJ
CAG
CCPQU
CITATION
COF
H13
HCIFZ
K7-
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
VOH
ZY4
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-4587316cc19d4c6aa6b0f9494fdbc7cc9ffe97aae9ff9950db4c7f79f89c1523
IEDL.DBID K7-
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468607000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 03:34:05 EST 2025
Sat Nov 29 01:34:45 EST 2025
Tue Nov 18 21:29:40 EST 2025
Fri Feb 21 02:32:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35F25
65L05
A posteriori based convergence analysis
Nonlinear equations
Optimal convergent solution
35F20
Singular perturbation
34A34
Multiple layer phenomena
65Y20
Interior layer
34L30
Multi-scale phenomena
Moving mesh algorithm
A priori and a posteriori meshes
65L50
Delay problem
System of differential equations
65J15
65L10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-4587316cc19d4c6aa6b0f9494fdbc7cc9ffe97aae9ff9950db4c7f79f89c1523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918663923
PQPubID 2043837
PageCount 23
ParticipantIDs proquest_journals_2918663923
crossref_primary_10_1007_s11075_018_0557_4
crossref_citationtrail_10_1007_s11075_018_0557_4
springer_journals_10_1007_s11075_018_0557_4
PublicationCentury 2000
PublicationDate 20190601
2019-6-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 6
  year: 2019
  text: 20190601
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Vulanovic (CR21) 2001; 21
Amiraliyev, Erdogan (CR3) 2009; 52
Kopteva (CR15) 2001; 39
Kellogg, Linss, Stynes (CR14) 2008; 77
Kopteva, Stynes (CR16) 2001; 39
Amiraliyev, Erdogan (CR2) 2007; 53
Zhang, Naidu, Zou (CR23) 2014; 9
Ha, Mehrman (CR10) 2016; 56
CR7
Kopteva, Madden, Stynes (CR17) 2005; 3
Cen, Le, Xu (CR6) 2010; 234
CR9
Huang, Russell (CR12) 2011
Das, Mehrmann (CR8) 2016; 56
Xu, Huang, Russell, Williams (CR22) 2011; 31
Abbas (CR1) 2011; 2011
Hemavathi, Bhuvaneswari, Valamarthi, Miller (CR11) 2007; 191
Kadalbajoo, Patidar, Sharma (CR13) 2006; 182
Lange, Miura (CR18) 1994; 54
Bashier, Patidar (CR4) 2011; 17
Beckett, Mackenzie (CR5) 2000; 35
Tian, Kuang (CR20) 2003; 281
Lange, Miura (CR19) 1994; 54
N Kopteva (557_CR15) 2001; 39
Z Cen (557_CR6) 2010; 234
N Kopteva (557_CR16) 2001; 39
R Vulanovic (557_CR21) 2001; 21
S Abbas (557_CR1) 2011; 2011
EBM Bashier (557_CR4) 2011; 17
RB Kellogg (557_CR14) 2008; 77
X Xu (557_CR22) 2011; 31
MK Kadalbajoo (557_CR13) 2006; 182
557_CR9
P Ha (557_CR10) 2016; 56
H Tian (557_CR20) 2003; 281
557_CR7
CG Lange (557_CR18) 1994; 54
Y Zhang (557_CR23) 2014; 9
GM Amiraliyev (557_CR2) 2007; 53
P Das (557_CR8) 2016; 56
N Kopteva (557_CR17) 2005; 3
CG Lange (557_CR19) 1994; 54
W Huang (557_CR12) 2011
MG Beckett (557_CR5) 2000; 35
S Hemavathi (557_CR11) 2007; 191
GM Amiraliyev (557_CR3) 2009; 52
References_xml – volume: 77
  start-page: 2085
  year: 2008
  end-page: 2096
  ident: CR14
  article-title: A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02125-X
– volume: 54
  start-page: 273
  year: 1994
  end-page: 283
  ident: CR19
  article-title: Singular perturbation analysis of boundary value problems for differential difference equations. vi. small shifts with rapid oscillations
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139992228119
– volume: 281
  start-page: 678
  year: 2003
  end-page: 696
  ident: CR20
  article-title: Asymptotic expansions for the solution of singularly perturbed delay differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00193-8
– year: 2011
  ident: CR12
  publication-title: Adaptive Moving Mesh Methods
  doi: 10.1007/978-1-4419-7916-2
– volume: 191
  start-page: 1
  year: 2007
  end-page: 11
  ident: CR11
  article-title: A parameter uniform numerical method for a system of singularly perturbed ordinary differential equations
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 1446
  year: 2001
  end-page: 1467
  ident: CR16
  article-title: A robust adapive method for a quasilinear one-dimensional convection diffusion problem
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290138471X
– volume: 17
  start-page: 779
  year: 2011
  end-page: 794
  ident: CR4
  article-title: A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190903305450
– volume: 234
  start-page: 3445
  year: 2010
  end-page: 3457
  ident: CR6
  article-title: A second-order hybrid difference scheme for a system of singularly perturbed initial value problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.05.006
– volume: 56
  start-page: 633
  year: 2016
  end-page: 657
  ident: CR10
  article-title: Analysis and numerical solution of linear delay differential-algebraic equations
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-015-0577-6
– volume: 182
  start-page: 119
  year: 2006
  end-page: 139
  ident: CR13
  article-title: ε-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general ddes
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 349
  year: 2001
  end-page: 366
  ident: CR21
  article-title: A priori meshes for singularly perturbed quasilinear two point boundary value problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/21.1.349
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 11
  ident: CR1
  article-title: Existence of solutions to fractional order ordinary and delay differential equations and applications
  publication-title: Electron. J. Differ. Equ.
– ident: CR9
– volume: 52
  start-page: 663
  year: 2009
  end-page: 675
  ident: CR3
  article-title: A finite difference scheme for a class of singularly perturbed initial value problems for delay differential equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-009-9306-z
– volume: 31
  start-page: 580
  year: 2011
  end-page: 596
  ident: CR22
  article-title: Convergence of de Boor’s algorithm for the generation of equidistributing meshes
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drp052
– volume: 35
  start-page: 87
  year: 2000
  end-page: 109
  ident: CR5
  article-title: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00065-3
– ident: CR7
– volume: 56
  start-page: 51
  year: 2016
  end-page: 76
  ident: CR8
  article-title: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-015-0559-8
– volume: 39
  start-page: 423
  year: 2001
  end-page: 441
  ident: CR15
  article-title: Maximum norm a posteriori error estimates for a one-dimensional convection diffusion problem
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900368642
– volume: 3
  start-page: 305
  year: 2005
  end-page: 322
  ident: CR17
  article-title: Grid equidistribution for reaction- diffusion problems in one dimension
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-005-7079-6
– volume: 53
  start-page: 1251
  year: 2007
  end-page: 1259
  ident: CR2
  article-title: Uniform numerical method for singularly perturbed delay differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.07.009
– volume: 54
  start-page: 249
  year: 1994
  end-page: 272
  ident: CR18
  article-title: Singular perturbation analysis of boundary value problems for differential difference equations. v. small shifts with layer behavior
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139992228120
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  end-page: 36
  ident: CR23
  article-title: Singular perturbations and time scales in control theory and applications: an overview 2002-2012
  publication-title: Int. J. Inf. Syst. Sci.
– volume: 17
  start-page: 779
  year: 2011
  ident: 557_CR4
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236190903305450
– volume: 54
  start-page: 273
  year: 1994
  ident: 557_CR19
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139992228119
– volume: 3
  start-page: 305
  year: 2005
  ident: 557_CR17
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-005-7079-6
– volume: 54
  start-page: 249
  year: 1994
  ident: 557_CR18
  publication-title: SIAM. J. Appl. Math.
  doi: 10.1137/S0036139992228120
– volume: 31
  start-page: 580
  year: 2011
  ident: 557_CR22
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drp052
– volume: 182
  start-page: 119
  year: 2006
  ident: 557_CR13
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 1446
  year: 2001
  ident: 557_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S003614290138471X
– volume: 21
  start-page: 349
  year: 2001
  ident: 557_CR21
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/21.1.349
– volume: 2011
  start-page: 1
  year: 2011
  ident: 557_CR1
  publication-title: Electron. J. Differ. Equ.
– volume: 35
  start-page: 87
  year: 2000
  ident: 557_CR5
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(99)00065-3
– ident: 557_CR9
  doi: 10.1016/j.cam.2017.11.026
– volume: 77
  start-page: 2085
  year: 2008
  ident: 557_CR14
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02125-X
– volume: 281
  start-page: 678
  year: 2003
  ident: 557_CR20
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00193-8
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  ident: 557_CR23
  publication-title: Int. J. Inf. Syst. Sci.
– volume: 53
  start-page: 1251
  year: 2007
  ident: 557_CR2
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.07.009
– volume: 56
  start-page: 633
  year: 2016
  ident: 557_CR10
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-015-0577-6
– volume: 234
  start-page: 3445
  year: 2010
  ident: 557_CR6
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.05.006
– ident: 557_CR7
  doi: 10.1080/00207160.2016.1184263
– volume-title: Adaptive Moving Mesh Methods
  year: 2011
  ident: 557_CR12
  doi: 10.1007/978-1-4419-7916-2
– volume: 56
  start-page: 51
  year: 2016
  ident: 557_CR8
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-015-0559-8
– volume: 191
  start-page: 1
  year: 2007
  ident: 557_CR11
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 423
  year: 2001
  ident: 557_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900368642
– volume: 52
  start-page: 663
  year: 2009
  ident: 557_CR3
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-009-9306-z
SSID ssj0010027
Score 2.5332623
Snippet The present work considers a nonlinear system of singularly perturbed delay differential equation whose each component of the solution has multiple layers....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 465
SubjectTerms Algebra
Algorithms
Computer Science
Convergence
Differential equations
Error analysis
Exact solutions
Mesh generation
Nonlinear systems
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Partial differential equations
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6aNIf00LR50G3TMoecWgR-aG3NMZSGHtpQmhByM7IeZGGzu7G3hf0L_dUd2dYuLW0gAR-MLcmCkWY-eWa-ATghT3VG3giVyULI0qZCFaURNk9cmSQ2V11-xdWX8vxcXV_TtyGPu43R7tEl2WnqTbIbn1RCoJkSgTdKyC14ytZOhd34_eJq7ToIB63Oxcnql-GNiq7Mfw3xpzHaIMy_nKKdrTnbe9QsX8DzAVriab8WXsITN9uHvQFm4rCJW34UKznEZ_vw7OuavbU9gF-nM9S4COkfzWTeTDCYOotdgHqXq-lQD1wmyJiX2856wg3dYPj1ECJbpytcuIbtWc09e7ponHsMnJQrjFVZWLtM0d31bOMtzvmzfFm9CDoYb117cwiXZ58uP34WQ80GYfK0WAo5VqEWljEpWWkKrYs68SRJelub0hji8anU2vEN0TixtTSlL8krMgwl8iPY5im7V4ApudynhS285f6sWC05a7OxCyc4nY1HkETZVWbgMw9lNabVhok5yKJiWVRBFpUcwft1l0VP5nFf4-O4IKphX7dVRoEgkDFlPoIPcQFsXv93sNcPav0GdhmXUR-Rdgzby-aHews75udy0jbvuuX-G5OP--A
  priority: 102
  providerName: Springer Nature
Title An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh
URI https://link.springer.com/article/10.1007/s11075-018-0557-4
https://www.proquest.com/docview/2918663923
Volume 81
WOSCitedRecordID wos000468607000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-09UEfrFbF03rsg0_KYj72spknqdIiqEdpS-lb2OwHFs67NDmF_gv-1c4kmzsU7IsQQiC7k4WZzMzuzPwG4DUGrDMMVpaZKqTSLpVloa10eeJ1kri87OsrLr7o-by8vMSTeODWxbTKUSf2itqtLJ-Rv8uQodnImufvm2vJXaM4uhpbaNyF3TTLUpbzz1puogi85-qjnaSJydMpx6hmXzpH-x5OWyslo1BJ9add2jqbf8VHe7NzvPe_C34ED6PDKQ4HCXkMd_xyH_ai8ynir93tw4OvGwDX7gn8OlwKIxquAGmviKpga-dEn6Pel2t6YSKciSC3l8YuB8wN0wo-feDk1sWNaHxLJq2mmQNitFgFwbCUN2JszEIKZiH89QA43okVfZYuZxpWw-K77749hfPjo_OPn2Rs2yBtnhZrqWYlt8OyNkWnbGFMUScBFargaqutRaKP2hhPD4izxNXK6qAxlGjJm8ifwQ4t2T8HkaLPQ1q4IjiaT7rVoXcum3nexJlsNoFk5FllI6Q5d9ZYVFswZmZzRWyumM2VmsCbzZRmwPO4bfDByNoq_tpdteXrBN6OwrF9_U9iL24n9hLuky-GQxbaAeys2x_-FdyzP9dXXTuF3Q9H85PTaS_fU05QPaP76dnFbyNaA7E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQcKBQQSwv4ABeQ1fx4k_hQoQqoWnW7QmKFerMc_4hKy26aLKB9Bd6l79gZJ9kVSPTWA1IOkWI7ifNlZuyZ-QbgtfSyTKQ3vEhExkVuY15kueE2jVweRTYtQn7F11E-HhdnZ_LzBlz2uTAUVtnLxCCo7dzQHvleIomaDbV5-r664FQ1iryrfQmNFhYnbvkLl2zN_vFH_L5vkuTw0-TDEe-qCnCTxtmCi2FB1ZqMiaUVJtM6KyMvhRTeliY3RnrvZK61wxMph5Ethcl9Ln0hDSq7FIe9BbcFCf8QKfhl5bSgJV5wrqLgR8Oq6J2oIVMPl1kUJVdwIr3i4k81uLZt_3LHBi13uPWfzc9DeNCZ0-ygxf8j2HCzbdjqTGvWCa5mG-6fruhpm8fw-2DGNKsov6U-x5dgpMstCxH4IRnVMd2RtTA06rHtrGUU0TWjvRUK3Z0uWeVqVNgl9mz5sNncMyLdXLK-7AyKzylzFy2desPmeFs8rK5IybDvrvn2BCY3MT1PYRMf2T0DFkuX-jizmbfYHzWHlc7aZOhoiaqT4QCiHiLKdITtVDdkqtZU04QqhahShColBvB21aVq2Uqua7zbI0l1gqtRaxgN4F2PxfXlfw72_PrBXsHdo8npSI2Oxyc7cA-tTtnG2-3C5qL-4V7AHfNzcd7UL8MvxUDdMESvALeIXx0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qFdEHq1XxtOo--KQszcdeknkstkeL9ShYSt_CZj_w4LyLySn0X_CvdibJ3qHUghTyEJLdzcLszv4mM_MbgHfosUrQG1kkKpMqt7EsstxIm0YujyKbFl1-xcVpPp0Wl5d4NtQ5bUO0e3BJ9jkNzNK0WO3X1u9vEt_IauGgs0Iyh5RUd-Cu4ppBbK5_uVi7Edjo6tydpIoJ6hTBrXndEH8eTBu0-ZeDtDt3Jju3nvFjeDRATnHQr5EnsOUWu7AzwE8xbO6WHoUKD-HZLjz8vGZ1bZ_Cr4OF0KLmtJBmtmxmgo9AK7rA9S6H0wk9cJwIwsLUdtETcehG8C8JjnidX4naNXTOVdSzp5EWSy-Yq_JKhGotpHXmwn3vWchbsaTP0mV1zbpZfHPt12dwPjk6_3gsh1oO0qRxtpJqXHCNLGNitMpkWmdV5FGh8rYyuTFI42OutaMbxHFkK2Vyn6Mv0BDESJ_DNk3ZvQARo0t9nNnMW-pPCteiszYZO7bsdDIeQRTkWJqB55zLbczLDUMzy6IkWZQsi1KN4P26S92TfNzUeC8sjnLY722ZIBMHEtZMR_AhLIbN638O9vK_Wr-F-2eHk_L0ZPrpFTwg6IZ90NoebK-aH-413DM_V7O2edPtgt-sFQe3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+a+posteriori+based+convergence+analysis+for+a+nonlinear+singularly+perturbed+system+of+delay+differential+equations+on+an+adaptive+mesh&rft.jtitle=Numerical+algorithms&rft.au=Das%2C+Pratibhamoy&rft.date=2019-06-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=81&rft.issue=2&rft.spage=465&rft.epage=487&rft_id=info:doi/10.1007%2Fs11075-018-0557-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_018_0557_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon