Using probabilistic movement primitives in robotics

Movement Primitives are a well-established paradigm for modular movement representation and generation. They provide a data-driven representation of movements and support generalization to novel situations, temporal modulation, sequencing of primitives and controllers for executing the primitive on...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots Vol. 42; no. 3; pp. 529 - 551
Main Authors: Paraschos, Alexandros, Daniel, Christian, Peters, Jan, Neumann, Gerhard
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2018
Springer Nature B.V
Subjects:
ISSN:0929-5593, 1573-7527
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Movement Primitives are a well-established paradigm for modular movement representation and generation. They provide a data-driven representation of movements and support generalization to novel situations, temporal modulation, sequencing of primitives and controllers for executing the primitive on physical systems. However, while many MP frameworks exhibit some of these properties, there is a need for a unified framework that implements all of them in a principled way. In this paper, we show that this goal can be achieved by using a probabilistic representation. Our approach models trajectory distributions learned from stochastic movements. Probabilistic operations, such as conditioning can be used to achieve generalization to novel situations or to combine and blend movements in a principled way. We derive a stochastic feedback controller that reproduces the encoded variability of the movement and the coupling of the degrees of freedom of the robot. We evaluate and compare our approach on several simulated and real robot scenarios.
AbstractList Movement Primitives are a well-established paradigm for modular movement representation and generation. They provide a data-driven representation of movements and support generalization to novel situations, temporal modulation, sequencing of primitives and controllers for executing the primitive on physical systems. However, while many MP frameworks exhibit some of these properties, there is a need for a unified framework that implements all of them in a principled way. In this paper, we show that this goal can be achieved by using a probabilistic representation. Our approach models trajectory distributions learned from stochastic movements. Probabilistic operations, such as conditioning can be used to achieve generalization to novel situations or to combine and blend movements in a principled way. We derive a stochastic feedback controller that reproduces the encoded variability of the movement and the coupling of the degrees of freedom of the robot. We evaluate and compare our approach on several simulated and real robot scenarios.
Author Neumann, Gerhard
Paraschos, Alexandros
Daniel, Christian
Peters, Jan
Author_xml – sequence: 1
  givenname: Alexandros
  surname: Paraschos
  fullname: Paraschos, Alexandros
  email: Paraschos@ias.tu-darmstadt.de
  organization: Technische Universität Darmstadt
– sequence: 2
  givenname: Christian
  surname: Daniel
  fullname: Daniel, Christian
  organization: Bosch Center for Artificial Intelligence
– sequence: 3
  givenname: Jan
  surname: Peters
  fullname: Peters, Jan
  organization: Technische Universität Darmstadt, Max-Planck-Institut für Intelligente Systeme
– sequence: 4
  givenname: Gerhard
  surname: Neumann
  fullname: Neumann, Gerhard
  organization: Computational Learning for Autonomous Systems, School of Computer Science, University of Lincoln
BookMark eNp9kEtLAzEUhYNUsK3-AHcDrqM372YpxRcU3Nh1yGQyJaXNaJIW_PemjCAIurpw7_nuOZwZmsQheoSuCdwSAHWXCQjCMRCFteQLrM7QlAjFsBJUTdAUNNVYCM0u0CznLQBoBTBFbJ1D3DTvaWhtG3Yhl-Ca_XD0ex9LXYd9KOHocxNiUzVDPedLdN7bXfZX33OO1o8Pb8tnvHp9elner7BjRBbMaUtVZwXrhKeEulZ6Ak60nKteMdd7zYERrhQXQvJWdhy0kx241llLhGRzdDP-rek-Dj4Xsx0OKVZLQ6nQQIEuaFWRUeXSkHPyvTmltunTEDCnbszYjandmFM3RlVG_WJcKLaEIZZkw-5fko5kri5x49NPpr-hLz8yeZQ
CitedBy_id crossref_primary_10_1109_LRA_2021_3056367
crossref_primary_10_1007_s43154_022_00082_9
crossref_primary_10_3390_robotics11060126
crossref_primary_10_1109_TIE_2024_3384602
crossref_primary_10_1016_j_engappai_2024_108310
crossref_primary_10_1109_TRO_2025_3593109
crossref_primary_10_1007_s10514_021_10030_9
crossref_primary_10_1007_s10846_022_01605_4
crossref_primary_10_1016_j_robot_2021_103842
crossref_primary_10_3389_fnins_2022_987472
crossref_primary_10_3389_frobt_2021_721890
crossref_primary_10_1109_TIE_2025_3539329
crossref_primary_10_1109_TRO_2024_3390052
crossref_primary_10_1109_LRA_2023_3248443
crossref_primary_10_3390_robotics13070107
crossref_primary_10_1177_0278364919868279
crossref_primary_10_1016_j_neucom_2024_128036
crossref_primary_10_1109_TRO_2024_3381558
crossref_primary_10_1109_TASE_2025_3559696
crossref_primary_10_1177_02783649231193046
crossref_primary_10_1016_j_ifacol_2021_11_186
crossref_primary_10_1080_00423114_2021_1930070
crossref_primary_10_1016_j_cie_2023_109345
crossref_primary_10_1109_LRA_2022_3184003
crossref_primary_10_1109_LRA_2020_3005892
crossref_primary_10_1109_TCDS_2021_3137262
crossref_primary_10_1016_j_ridd_2021_103854
crossref_primary_10_1007_s10845_020_01686_8
crossref_primary_10_1016_j_neucom_2023_126781
crossref_primary_10_1109_TASE_2022_3217468
crossref_primary_10_1109_TASE_2024_3403833
crossref_primary_10_1109_LRA_2021_3068891
crossref_primary_10_1109_LRA_2021_3068892
crossref_primary_10_1109_LRA_2024_3349809
crossref_primary_10_3389_fnbot_2022_1086578
crossref_primary_10_3390_s20195505
crossref_primary_10_1109_LRA_2022_3146614
crossref_primary_10_1002_rob_22230
crossref_primary_10_1109_LRA_2021_3060414
crossref_primary_10_3389_fnbot_2023_1320251
crossref_primary_10_1109_LRA_2019_2928760
crossref_primary_10_3389_frobt_2021_638849
crossref_primary_10_1177_0278364919846363
crossref_primary_10_1109_LRA_2025_3577430
crossref_primary_10_1109_TRO_2025_3582829
crossref_primary_10_1007_s10846_022_01696_z
crossref_primary_10_1007_s10514_022_10067_4
crossref_primary_10_1007_s10846_024_02051_0
crossref_primary_10_3390_s24123964
crossref_primary_10_1109_TSMC_2023_3285588
crossref_primary_10_3390_s22082862
crossref_primary_10_1109_LRA_2020_2970620
crossref_primary_10_1146_annurev_control_061623_094742
crossref_primary_10_1109_LRA_2024_3385691
crossref_primary_10_1109_TASE_2025_3592739
crossref_primary_10_1109_TASE_2021_3127574
crossref_primary_10_1109_LRA_2021_3086666
crossref_primary_10_3390_biomimetics9120738
crossref_primary_10_1109_TNNLS_2024_3397356
crossref_primary_10_3389_frobt_2022_772228
crossref_primary_10_1631_FITEE_2200065
crossref_primary_10_3389_frobt_2019_00089
crossref_primary_10_1109_TCDS_2023_3296166
crossref_primary_10_1109_TMECH_2022_3196036
crossref_primary_10_3390_app15063171
crossref_primary_10_1007_s12652_023_04551_7
crossref_primary_10_1109_ACCESS_2018_2873718
crossref_primary_10_1109_THMS_2021_3107523
crossref_primary_10_1016_j_inffus_2024_102379
crossref_primary_10_3389_fnbot_2019_00056
crossref_primary_10_3390_electronics12194122
crossref_primary_10_1016_j_neucom_2024_127711
crossref_primary_10_1177_02783649221143399
crossref_primary_10_1109_LRA_2021_3125058
crossref_primary_10_1109_TRO_2021_3127108
crossref_primary_10_3390_s21248389
crossref_primary_10_1108_IR_12_2023_0322
crossref_primary_10_1109_LRA_2025_3546109
crossref_primary_10_1016_j_automatica_2023_111120
crossref_primary_10_1007_s11633_025_1560_6
crossref_primary_10_1109_TIE_2023_3250746
crossref_primary_10_1016_j_robot_2022_104312
crossref_primary_10_1109_ACCESS_2024_3422808
crossref_primary_10_3389_fnins_2021_694914
crossref_primary_10_1109_LRA_2024_3477169
crossref_primary_10_1016_j_robot_2024_104869
crossref_primary_10_1109_TASE_2022_3233851
crossref_primary_10_1016_j_cie_2024_110144
crossref_primary_10_1109_TASE_2024_3469961
crossref_primary_10_1007_s11432_024_4322_6
crossref_primary_10_1109_LRA_2020_2976314
crossref_primary_10_3389_frobt_2023_1256763
crossref_primary_10_1109_LRA_2023_3333741
crossref_primary_10_1016_j_robot_2025_105056
crossref_primary_10_1109_LRA_2021_3061310
crossref_primary_10_1109_LRA_2023_3279618
crossref_primary_10_1109_TRO_2023_3286074
crossref_primary_10_1109_TRO_2023_3303011
Cites_doi 10.1007/s11370-015-0187-9
10.1109/HUMANOIDS.2013.7030017
10.1177/0278364912472380
10.1109/ROBOT.2006.1641933
10.1177/1059712311419378
10.1016/j.neunet.2008.03.014
10.1109/IROS.2010.5649089
10.1162/NECO_a_00393
10.1145/1553374.1553508
10.1109/IROS.2010.5648931
10.1109/HUMANOIDS.2012.6651499
10.1109/TRO.2011.2159412
10.1109/MRA.2010.936947
10.1016/j.neunet.2011.02.004
10.1007/978-3-319-22873-0_17
10.1177/0278364911402527
10.1109/TRO.2010.2065430
10.1109/IROS.2011.6095059
10.1007/s10514-007-9051-x
10.1177/0278364911428653
10.1109/IROS.2015.7353412
10.1007/11008941_60
10.1109/IROS.2012.6386047
10.1109/ROBOT.2010.5509672
10.1016/j.robot.2004.03.003
10.1109/HUMANOIDS.2014.7041413
10.1038/nn963
10.1073/pnas.0500199102
10.1109/TRO.2011.2163863
10.1609/aaai.v27i1.8543
10.1109/ROBOT.2009.5152385
10.1109/ICRA.2015.7139390
10.1145/1553374.1553471
10.1016/j.robot.2012.05.004
10.1016/0024-3795(88)90223-6
10.1109/TRO.2014.2304775
10.1007/s10514-011-9235-2
10.1126/science.1210617
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Autonomous Robots is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Autonomous Robots is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-017-9648-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 551
ExternalDocumentID 10_1007_s10514_017_9648_7
GrantInformation_xml – fundername: Seventh Framework Programme (BE)
  grantid: 248273
  funderid: http://dx.doi.org/10.13039/501100004963
– fundername: Seventh Framework Programme
  grantid: 600716; 270327
  funderid: http://dx.doi.org/10.13039/501100004963
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-42b27da53d5e212cb6e10c5b447f73cfe9403147745564b6d409c6d0cbcaa1563
IEDL.DBID M7S
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425113800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5593
IngestDate Thu Nov 06 14:26:37 EST 2025
Tue Nov 18 21:10:27 EST 2025
Sat Nov 29 02:41:59 EST 2025
Fri Feb 21 02:33:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Control
Movement primitives
Trajectory representation
Imitation learning
Robotics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-42b27da53d5e212cb6e10c5b447f73cfe9403147745564b6d409c6d0cbcaa1563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2259020282
PQPubID 326361
PageCount 23
ParticipantIDs proquest_journals_2259020282
crossref_primary_10_1007_s10514_017_9648_7
crossref_citationtrail_10_1007_s10514_017_9648_7
springer_journals_10_1007_s10514_017_9648_7
PublicationCentury 2000
PublicationDate 20180300
2018-3-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 3
  year: 2018
  text: 20180300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-dimensional control variables for movement primitives. In International conference on robotics and automation (ICRA) (pp. 1511–1518).
MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380
Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequencing simpler motion templates. In International conference on machine learning (ICML) (pp. 753–760)
Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010b). Learning-based control strategy for safe human–robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254).
ForteDGamsAMorimotoJUdeAOn-line motion synthesis and adaptation using a trajectory databaseRobotics and Autonomous Systems2012601327133910.1016/j.robot.2012.05.004
HighamNJComputing a nearest symmetric positive semidefinite matrixLinear Algebra and its Applications198810310311894399710.1016/0024-3795(88)90223-60649.65026
CalinonSA tutorial on task-parameterized movement learning and retrievalIntelligent Service Robotics20169112910.1007/s11370-015-0187-9
Paraschos, A., Neumann, G., & Peters, J. (2013b). A probabilistic approach to robot trajectory generation. In International conference on humanoid robots (humanoids) (pp. 477–483)
Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: An application to biped locomotion control. In International conference on robotics and automation, (ICRA) (pp. 1585–1590).
Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013). Learning collaborative impedance-based robot behaviors. In AAAI conference on artificial intelligence (pp. 1422–1428).
NakanishiJMorimotoJEndoGChengGSchaalSKawatoMLearning from demonstration and adaptation of biped locomotionRobotics and Autonomous Systems200447799110.1016/j.robot.2004.03.003
MoroFLTsagarakisNGCaldwellDGOn the kinematic motion primitives (kMPs)—Theory and applicationFrontiers in Neurorobotics2012610118
Lazaric, A., & Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning. In International conference on machine learning (ICML) (pp. 599–606).
PetersJMistryMUdwadiaFENakanishiJSchaalSA unifying methodology for robot control with redundant DOFsAutonomous Robots200824111210.1007/s10514-007-9051-x
StengelRFOptimal control and estimation2012North Chelmsford, MACourier Corporation0854.93001
IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002
Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In International conference on machine learning (ICML) (pp. 1049–1056).
dAvellaABizziEShared and specific muscle synergies in natural motor behaviorsProceedings of the National Academy of Sciences (PNAS)200510233076308110.1073/pnas.0500199102
Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Peters, J., & Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In International conference on humanoid robots (Humanoids) (pp. 527–534).
Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in neural information processing systems (NIPS) (pp. 1547–1554).
MatsubaraTHyonSHMorimotoJLearning parametric dynamic movement primitives from multiple demonstrationsNeural Networks201124549350010.1016/j.neunet.2011.02.004
OHagan, A., & Forster, J. (2004). Kendalls advanced theory of statistics: Bayesian inference (2nd ed.). Arnold, New York. Technical report, ISBN 0-340-80752-0.
Khansari-ZadehSMBillardALearning stable nonlinear dynamical systems with Gaussian mixture modelsIEEE Transactions on Robotics201127594395710.1109/TRO.2011.2159412
IjspeertAJCentral pattern generators for locomotion control in animals and robots: A reviewNeural Networks200821464265310.1016/j.neunet.2008.03.014
BuchliJStulpFTheodorouESchaalSLearning variable impedance controlInternational Journal of Robotics Research201130782083310.1177/0278364911402527
RückertEANeumannGToussaintMMaassWLearned graphical models for probabilistic planning provide a new class of movement primitivesFrontiers in Computational Neuroscience20126971
Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning movement primitives. In International symposium on robotics research (pp. 561–572).
Kormushev, P., Calinon, S., & Caldwell, D. G. (2010). Robot motor skill coordination with EM-based reinforcement learning. In International conference on intelligent robots and systems (IROS) (pp. 3232–3237).
StarkHWoodsJProbability and random processes with applications to signal processing20013Upper Saddle RiverPrentice-Hall
DominiciNIvanenkoYPCappelliniGdAvellaAMondìVCiccheseMFabianoASileiTDi PaoloAGianniniCLocomotor primitives in newborn babies and their developmentScience2011334605899799910.1126/science.1210617
Khansari-Zadeh, S. M., Kronander, K., & Billard, A. (2014). Modeling robot discrete movements with state-varying stiffness and damping: A framework for integrated motion generation and impedance control. In Robotics science and systems (R:SS).
GamsANemecBIjspeertAJUdeACoupling movement primitives: Interaction with the environment and bimanual tasksIEEE Transactions on Robotics201430481683010.1109/TRO.2014.2304775
Ernesti, J., Righetti, L., Do, M., Asfour, T., & Schaal, S. (2012). Encoding of periodic and their transient motions by a single dynamic movement primitive. In IEEE-RAS international conference on humanoid robots (humanoids) (pp. 57–64).
Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., & Peters, J. (2010). Movement templates for learning of hitting and batting. In International conference on robotics and automation (ICRA) (pp. 853–858).
Ewerton, M., Maeda, G., Peters, J., & Neumann, G. (2015). Learning motor skills from partially observed movements executed at different speeds. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 456–463).
NeumannGDanielCParaschosAKupcsikAPetersJLearning modular policies for roboticsFrontiers in Computational Neuroscience20148621
KonidarisGKuindersmaSGrupenRBartoARobot learning from demonstration by constructing skill treesInternational Journal of Robotics Research (IJRR)201231336037510.1177/0278364911428653
Bruno, D., Calinon, S., Malekzadeh, M. S., & Caldwell, D. G. (2015). Learning the stiffness of a continuous soft manipulator from multiple demonstrations. In Intelligent robotics and applications (pp. 185–195).
Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA) (pp. 763–768)
SchaalSMohajerianPIjspeertADynamics systems vs. optimal control—A unifying viewComputational Neuroscience: Theoretical Insights into Brain Function2007165425445
Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent motor skills in versatile solution spaces. In IEEE/RSJ international conference on intelligent robots and systems (IROS), (pp. 3591–3597).
TodorovEGeneral duality between optimal control and estimationConference on Decision and Control2008542864292
DegallierSRighettiLGaySIjspeertAToward simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitivesAutonomous Robots20113115518110.1007/s10514-011-9235-2
Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In International conference on intelligent robots and systems (IROS) (pp. 365–371)
Williams B., Toussaint, M., & Storkey, A. (2007). Modelling motion primitives and their timing in biologically executed movements. In Advances in neural information processing systems (NIPS) (pp. 1609–1616).
MuellingKKoberJPetersJA biomimetic approach to robot table tennisAdaptive Behavior Journal201119535937610.1177/1059712311419378
Klug, S., Lens, T., von Stryk, O., Möhl, B., & Karguth, A. (2008). Biologically inspired robot manipulator for new applications in automation engineering. In Proceedings of robotik.
da Silva, B., Konidaris, G., & Barto, A. (2012). Learning parameterized skills. In International conference on machine learning (pp. 1679–1686).
KulviciusTNingKTamosiunaiteMWorgotterFJoining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwritingIEEE Transactions on Robotics201228114515710.1109/TRO.2011.2163863
Li, W., & Todorov, E. (2010). Iterative linear quadratic regulator design for nonlinear biological movement systems. In International conference on informatics in control, automation and robotics (ICINCO) (pp. 222–229).
Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013a). Probabilistic movement primitives. In Advances in neural information processing systems (NIPS) (pp. 2616–2624).
TodorovEJordanMOptimal feedback control as a theory of motor coordinationNature Neuroscience200251226123510.1038/nn963
CalinonSD’HalluinFSauserELCaldwellDGBillardAGLearning and reproduction of gestures by imitationIEEE Robotics and Automation Magazine201017445410.1109/MRA.2010.936947
UdeAGamsAAsfourTMorimotoJTask-specific generalization of discrete and periodic dynamic movement primitivesTransactions in Robotics2010580081510.1109/TRO.2010.2065430
AJ Ijspeert (9648_CR16) 2008; 21
9648_CR52
K Muelling (9648_CR31) 2011; 19
9648_CR12
G Konidaris (9648_CR23) 2012; 31
9648_CR54
9648_CR11
EA Rückert (9648_CR44) 2012; 6
AJ Ijspeert (9648_CR17) 2013; 25
H Stark (9648_CR48) 2001
S Degallier (9648_CR9) 2011; 31
9648_CR18
9648_CR42
T Matsubara (9648_CR29) 2011; 24
9648_CR40
9648_CR45
J Nakanishi (9648_CR33) 2004; 47
9648_CR43
J Peters (9648_CR41) 2008; 24
S Schaal (9648_CR46) 2007; 165
RF Stengel (9648_CR49) 2012
K Mülling (9648_CR32) 2013; 32
E Todorov (9648_CR50) 2008; 5
9648_CR47
N Dominici (9648_CR10) 2011; 334
9648_CR35
NJ Higham (9648_CR15) 1988; 103
G Neumann (9648_CR34) 2014; 8
9648_CR38
9648_CR39
9648_CR36
9648_CR37
A Ude (9648_CR53) 2010; 5
S Calinon (9648_CR4) 2010; 17
9648_CR20
FL Moro (9648_CR30) 2012; 6
A dAvella (9648_CR8) 2005; 102
A Gams (9648_CR14) 2014; 30
9648_CR24
T Kulvicius (9648_CR25) 2012; 28
9648_CR21
9648_CR22
J Buchli (9648_CR2) 2011; 30
SM Khansari-Zadeh (9648_CR19) 2011; 27
S Calinon (9648_CR3) 2016; 9
9648_CR1
D Forte (9648_CR13) 2012; 60
E Todorov (9648_CR51) 2002; 5
9648_CR5
9648_CR27
9648_CR6
9648_CR28
9648_CR7
9648_CR26
References_xml – reference: ForteDGamsAMorimotoJUdeAOn-line motion synthesis and adaptation using a trajectory databaseRobotics and Autonomous Systems2012601327133910.1016/j.robot.2012.05.004
– reference: Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010b). Learning-based control strategy for safe human–robot interaction exploiting task and robot redundancies. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 249–254).
– reference: Klug, S., Lens, T., von Stryk, O., Möhl, B., & Karguth, A. (2008). Biologically inspired robot manipulator for new applications in automation engineering. In Proceedings of robotik.
– reference: Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern generators: An application to biped locomotion control. In International conference on robotics and automation, (ICRA) (pp. 1585–1590).
– reference: dAvellaABizziEShared and specific muscle synergies in natural motor behaviorsProceedings of the National Academy of Sciences (PNAS)200510233076308110.1073/pnas.0500199102
– reference: SchaalSMohajerianPIjspeertADynamics systems vs. optimal control—A unifying viewComputational Neuroscience: Theoretical Insights into Brain Function2007165425445
– reference: IjspeertAJCentral pattern generators for locomotion control in animals and robots: A reviewNeural Networks200821464265310.1016/j.neunet.2008.03.014
– reference: Neumann, G., Maass, W., & Peters, J. (2009). Learning complex motions by sequencing simpler motion templates. In International conference on machine learning (ICML) (pp. 753–760)
– reference: Khansari-Zadeh, S. M., Kronander, K., & Billard, A. (2014). Modeling robot discrete movements with state-varying stiffness and damping: A framework for integrated motion generation and impedance control. In Robotics science and systems (R:SS).
– reference: Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013a). Probabilistic movement primitives. In Advances in neural information processing systems (NIPS) (pp. 2616–2624).
– reference: Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent motor skills in versatile solution spaces. In IEEE/RSJ international conference on intelligent robots and systems (IROS), (pp. 3591–3597).
– reference: MüllingKKoberJKroemerOPetersJLearning to select and generalize striking movements in robot table tennisThe International Journal of Robotics Research201332326327910.1177/0278364912472380
– reference: PetersJMistryMUdwadiaFENakanishiJSchaalSA unifying methodology for robot control with redundant DOFsAutonomous Robots200824111210.1007/s10514-007-9051-x
– reference: Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Peters, J., & Neumann, G. (2014). Learning interaction for collaborative tasks with probabilistic movement primitives. In International conference on humanoid robots (Humanoids) (pp. 527–534).
– reference: GamsANemecBIjspeertAJUdeACoupling movement primitives: Interaction with the environment and bimanual tasksIEEE Transactions on Robotics201430481683010.1109/TRO.2014.2304775
– reference: MoroFLTsagarakisNGCaldwellDGOn the kinematic motion primitives (kMPs)—Theory and applicationFrontiers in Neurorobotics2012610118
– reference: Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In International conference on robotics and automation (ICRA) (pp. 763–768)
– reference: Bruno, D., Calinon, S., Malekzadeh, M. S., & Caldwell, D. G. (2015). Learning the stiffness of a continuous soft manipulator from multiple demonstrations. In Intelligent robotics and applications (pp. 185–195).
– reference: Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G. (2015). Extracting low-dimensional control variables for movement primitives. In International conference on robotics and automation (ICRA) (pp. 1511–1518).
– reference: KonidarisGKuindersmaSGrupenRBartoARobot learning from demonstration by constructing skill treesInternational Journal of Robotics Research (IJRR)201231336037510.1177/0278364911428653
– reference: TodorovEJordanMOptimal feedback control as a theory of motor coordinationNature Neuroscience200251226123510.1038/nn963
– reference: TodorovEGeneral duality between optimal control and estimationConference on Decision and Control2008542864292
– reference: Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., & Peters, J. (2010). Movement templates for learning of hitting and batting. In International conference on robotics and automation (ICRA) (pp. 853–858).
– reference: Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in neural information processing systems (NIPS) (pp. 1547–1554).
– reference: NeumannGDanielCParaschosAKupcsikAPetersJLearning modular policies for roboticsFrontiers in Computational Neuroscience20148621
– reference: DominiciNIvanenkoYPCappelliniGdAvellaAMondìVCiccheseMFabianoASileiTDi PaoloAGianniniCLocomotor primitives in newborn babies and their developmentScience2011334605899799910.1126/science.1210617
– reference: StengelRFOptimal control and estimation2012North Chelmsford, MACourier Corporation0854.93001
– reference: MuellingKKoberJPetersJA biomimetic approach to robot table tennisAdaptive Behavior Journal201119535937610.1177/1059712311419378
– reference: DegallierSRighettiLGaySIjspeertAToward simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitivesAutonomous Robots20113115518110.1007/s10514-011-9235-2
– reference: Lazaric, A., & Ghavamzadeh, M. (2010). Bayesian multi-task reinforcement learning. In International conference on machine learning (ICML) (pp. 599–606).
– reference: OHagan, A., & Forster, J. (2004). Kendalls advanced theory of statistics: Bayesian inference (2nd ed.). Arnold, New York. Technical report, ISBN 0-340-80752-0.
– reference: Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013). Learning collaborative impedance-based robot behaviors. In AAAI conference on artificial intelligence (pp. 1422–1428).
– reference: RückertEANeumannGToussaintMMaassWLearned graphical models for probabilistic planning provide a new class of movement primitivesFrontiers in Computational Neuroscience20126971
– reference: BuchliJStulpFTheodorouESchaalSLearning variable impedance controlInternational Journal of Robotics Research201130782083310.1177/0278364911402527
– reference: da Silva, B., Konidaris, G., & Barto, A. (2012). Learning parameterized skills. In International conference on machine learning (pp. 1679–1686).
– reference: Williams B., Toussaint, M., & Storkey, A. (2007). Modelling motion primitives and their timing in biologically executed movements. In Advances in neural information processing systems (NIPS) (pp. 1609–1616).
– reference: Ewerton, M., Maeda, G., Peters, J., & Neumann, G. (2015). Learning motor skills from partially observed movements executed at different speeds. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 456–463).
– reference: StarkHWoodsJProbability and random processes with applications to signal processing20013Upper Saddle RiverPrentice-Hall
– reference: Ernesti, J., Righetti, L., Do, M., Asfour, T., & Schaal, S. (2012). Encoding of periodic and their transient motions by a single dynamic movement primitive. In IEEE-RAS international conference on humanoid robots (humanoids) (pp. 57–64).
– reference: Kormushev, P., Calinon, S., & Caldwell, D. G. (2010). Robot motor skill coordination with EM-based reinforcement learning. In International conference on intelligent robots and systems (IROS) (pp. 3232–3237).
– reference: UdeAGamsAAsfourTMorimotoJTask-specific generalization of discrete and periodic dynamic movement primitivesTransactions in Robotics2010580081510.1109/TRO.2010.2065430
– reference: KulviciusTNingKTamosiunaiteMWorgotterFJoining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwritingIEEE Transactions on Robotics201228114515710.1109/TRO.2011.2163863
– reference: Li, W., & Todorov, E. (2010). Iterative linear quadratic regulator design for nonlinear biological movement systems. In International conference on informatics in control, automation and robotics (ICINCO) (pp. 222–229).
– reference: Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In International conference on intelligent robots and systems (IROS) (pp. 365–371)
– reference: Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning movement primitives. In International symposium on robotics research (pp. 561–572).
– reference: MatsubaraTHyonSHMorimotoJLearning parametric dynamic movement primitives from multiple demonstrationsNeural Networks201124549350010.1016/j.neunet.2011.02.004
– reference: Paraschos, A., Neumann, G., & Peters, J. (2013b). A probabilistic approach to robot trajectory generation. In International conference on humanoid robots (humanoids) (pp. 477–483)
– reference: Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In International conference on machine learning (ICML) (pp. 1049–1056).
– reference: CalinonSA tutorial on task-parameterized movement learning and retrievalIntelligent Service Robotics20169112910.1007/s11370-015-0187-9
– reference: HighamNJComputing a nearest symmetric positive semidefinite matrixLinear Algebra and its Applications198810310311894399710.1016/0024-3795(88)90223-60649.65026
– reference: CalinonSD’HalluinFSauserELCaldwellDGBillardAGLearning and reproduction of gestures by imitationIEEE Robotics and Automation Magazine201017445410.1109/MRA.2010.936947
– reference: Khansari-ZadehSMBillardALearning stable nonlinear dynamical systems with Gaussian mixture modelsIEEE Transactions on Robotics201127594395710.1109/TRO.2011.2159412
– reference: IjspeertAJNakanishiJHoffmannHPastorPSchaalSDynamical movement primitives: Learning attractor models for motor behaviorsNeural Computation2013252328373305849910.1162/NECO_a_003931269.92002
– reference: NakanishiJMorimotoJEndoGChengGSchaalSKawatoMLearning from demonstration and adaptation of biped locomotionRobotics and Autonomous Systems200447799110.1016/j.robot.2004.03.003
– volume: 9
  start-page: 1
  issue: 1
  year: 2016
  ident: 9648_CR3
  publication-title: Intelligent Service Robotics
  doi: 10.1007/s11370-015-0187-9
– volume-title: Optimal control and estimation
  year: 2012
  ident: 9648_CR49
– ident: 9648_CR38
  doi: 10.1109/HUMANOIDS.2013.7030017
– ident: 9648_CR26
– volume: 32
  start-page: 263
  issue: 3
  year: 2013
  ident: 9648_CR32
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364912472380
– ident: 9648_CR42
  doi: 10.1109/ROBOT.2006.1641933
– volume: 19
  start-page: 359
  issue: 5
  year: 2011
  ident: 9648_CR31
  publication-title: Adaptive Behavior Journal
  doi: 10.1177/1059712311419378
– volume: 21
  start-page: 642
  issue: 4
  year: 2008
  ident: 9648_CR16
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2008.03.014
– ident: 9648_CR24
  doi: 10.1109/IROS.2010.5649089
– volume: 25
  start-page: 328
  issue: 2
  year: 2013
  ident: 9648_CR17
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00393
– ident: 9648_CR52
  doi: 10.1145/1553374.1553508
– ident: 9648_CR5
  doi: 10.1109/IROS.2010.5648931
– ident: 9648_CR7
– ident: 9648_CR11
  doi: 10.1109/HUMANOIDS.2012.6651499
– volume: 27
  start-page: 943
  issue: 5
  year: 2011
  ident: 9648_CR19
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2011.2159412
– volume: 17
  start-page: 44
  year: 2010
  ident: 9648_CR4
  publication-title: IEEE Robotics and Automation Magazine
  doi: 10.1109/MRA.2010.936947
– ident: 9648_CR36
– ident: 9648_CR21
– volume: 24
  start-page: 493
  issue: 5
  year: 2011
  ident: 9648_CR29
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.02.004
– ident: 9648_CR1
  doi: 10.1007/978-3-319-22873-0_17
– volume: 30
  start-page: 820
  issue: 7
  year: 2011
  ident: 9648_CR2
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364911402527
– volume: 5
  start-page: 800
  year: 2010
  ident: 9648_CR53
  publication-title: Transactions in Robotics
  doi: 10.1109/TRO.2010.2065430
– volume: 165
  start-page: 425
  year: 2007
  ident: 9648_CR46
  publication-title: Computational Neuroscience: Theoretical Insights into Brain Function
– ident: 9648_CR40
  doi: 10.1109/IROS.2011.6095059
– volume: 24
  start-page: 1
  issue: 1
  year: 2008
  ident: 9648_CR41
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-007-9051-x
– volume: 31
  start-page: 360
  issue: 3
  year: 2012
  ident: 9648_CR23
  publication-title: International Journal of Robotics Research (IJRR)
  doi: 10.1177/0278364911428653
– ident: 9648_CR12
  doi: 10.1109/IROS.2015.7353412
– volume: 6
  start-page: 1
  issue: 10
  year: 2012
  ident: 9648_CR30
  publication-title: Frontiers in Neurorobotics
– ident: 9648_CR47
  doi: 10.1007/11008941_60
– ident: 9648_CR6
  doi: 10.1109/IROS.2012.6386047
– volume: 6
  start-page: 1
  issue: 97
  year: 2012
  ident: 9648_CR44
  publication-title: Frontiers in Computational Neuroscience
– ident: 9648_CR22
  doi: 10.1109/ROBOT.2010.5509672
– volume: 47
  start-page: 79
  year: 2004
  ident: 9648_CR33
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2004.03.003
– ident: 9648_CR28
  doi: 10.1109/HUMANOIDS.2014.7041413
– ident: 9648_CR18
– ident: 9648_CR20
– volume: 5
  start-page: 1226
  year: 2002
  ident: 9648_CR51
  publication-title: Nature Neuroscience
  doi: 10.1038/nn963
– volume: 102
  start-page: 3076
  issue: 3
  year: 2005
  ident: 9648_CR8
  publication-title: Proceedings of the National Academy of Sciences (PNAS)
  doi: 10.1073/pnas.0500199102
– volume: 28
  start-page: 145
  issue: 1
  year: 2012
  ident: 9648_CR25
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2011.2163863
– ident: 9648_CR43
  doi: 10.1609/aaai.v27i1.8543
– volume: 5
  start-page: 4286
  year: 2008
  ident: 9648_CR50
  publication-title: Conference on Decision and Control
– ident: 9648_CR39
  doi: 10.1109/ROBOT.2009.5152385
– volume: 8
  start-page: 1
  issue: 62
  year: 2014
  ident: 9648_CR34
  publication-title: Frontiers in Computational Neuroscience
– ident: 9648_CR45
  doi: 10.1109/ICRA.2015.7139390
– ident: 9648_CR35
  doi: 10.1145/1553374.1553471
– volume: 60
  start-page: 1327
  year: 2012
  ident: 9648_CR13
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2012.05.004
– volume: 103
  start-page: 103
  year: 1988
  ident: 9648_CR15
  publication-title: Linear Algebra and its Applications
  doi: 10.1016/0024-3795(88)90223-6
– volume: 30
  start-page: 816
  issue: 4
  year: 2014
  ident: 9648_CR14
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2014.2304775
– ident: 9648_CR27
– volume-title: Probability and random processes with applications to signal processing
  year: 2001
  ident: 9648_CR48
– volume: 31
  start-page: 155
  year: 2011
  ident: 9648_CR9
  publication-title: Autonomous Robots
  doi: 10.1007/s10514-011-9235-2
– volume: 334
  start-page: 997
  issue: 6058
  year: 2011
  ident: 9648_CR10
  publication-title: Science
  doi: 10.1126/science.1210617
– ident: 9648_CR54
– ident: 9648_CR37
SSID ssj0009700
Score 2.6076021
Snippet Movement Primitives are a well-established paradigm for modular movement representation and generation. They provide a data-driven representation of movements...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 529
SubjectTerms Artificial Intelligence
Computer Imaging
Computer simulation
Control
Engineering
Feedback control
Mechatronics
Pattern Recognition and Graphics
Probability theory
Representations
Robotics
Robotics and Automation
Robots
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTKX3wSQlsTZo0jyIOH2QI6thbaD4KA-3GVv37vWStnaKCvraXUO7Su9-Ru98BnCOix6zLaOKkdITZ2BFE9ZawzEltmDRxmEM2vBODQToayfuqj3teV7vXV5LBUy81u2FwJ96rSs5SIlZhLfFkMz5Ffxg2TLtV3wnGfYJwmdZXmd9t8TkYNQjzy6VoiDX97X995Q5sVdAyulqchV1YccUebC4RDu4DDRUCkZ8iE5h1PUlz9DIJnOElPvbdTp6HNhoXEcpMPIfzATz1bx6vb0k1NoEY2uMlYbGOhc0SahOHgclo7npdk2jGRC6oyZ1knrMecV-ScKa5xRTPcNs12mQZpnP0EFrFpHBHEGmtbYwBPpVGMp6K1NGc5qh1NCFii6wN3Vp_ylSc4n60xbNq2JC9PhTqQ3l9KNGGi48l0wWhxm_Cndooqvq35go9kESQi7liGy5rIzSvf9zs-E_SJ7CB2ChdlJt1oFXOXt0prJu3cjyfnYUj9w68MM6D
  priority: 102
  providerName: Springer Nature
Title Using probabilistic movement primitives in robotics
URI https://link.springer.com/article/10.1007/s10514-017-9648-7
https://www.proquest.com/docview/2259020282
Volume 42
WOSCitedRecordID wos000425113800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7527
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009700
  issn: 0929-5593
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0ShVBmYQBZt7Dw8IUCtGFBVtVBVLFHsuFIlSEob-P2cHYcAEl1YPCSOFZ3tu-_su-8AzhHRo9clBVGcK8ISVxFE9QlhseJCMi5dU4ds_BD0--Fkwgf2wG1pwypLnWgUdZJJfUZ-heuOI7RBD-F6_kZ01Sh9u2pLaKxDXbMkdEzo3qgi3bUpKAgBCCJnWt5qFqlzCBWI1tHcZyEJftqlCmz-uh81Zqe3898f3oVtCzidm2KF7MGaSvdh6xsN4QFQEzfg6Noyhm9XUzc7r5lhEs_xsc6B0uy0zix1sE-mmZ0P4anXfby7J7aYApG04-eEucINktijiafQXEnhq05beoKxYBpQOVWcaSZ7RIOe5zPhJ-j4ST9pSyHjGJ08egS1NEvVMThCiMRFsx9yyZkfBqGiUzpF5IETi4gjbkC7FGUkLdO4LnjxElUcyVr6EUo_0tKPggZcfH0yL2g2VnVulhKP7I5bRpW4G3BZzln1-s_BTlYPdgqbCJHCIuqsCbV88a7OYEN-5LPlogX1225_MGyZZYftwHvGdjgafwLDWtyb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gmKgH30YUtQe9aDZCd_vYgzE-IBCQEIOGW-1ul4REAQE1_il_o7N9WDWRGwev7e6m6Ted_aaz8w3AITJ6jLqkIIpzRVhgKoKsPiDMV1xIxqUZ9iG7bzjNptvp8FYGPpJaGH2sMvGJoaMOBlL_Iz9Fu-NIbTBCOB8-E901SmdXkxYakVnU1fsbhmzjs9o14ntkmpVy-6pK4q4CRNKSPSHMFKYT-BYNLIV-WwpblYrSEow5XYfKruJMS7ojLbIsmwk7wAhI2kFRCun7GO1QXHcOcowy28pC7rLcbN2mMr9x0QuSDoJcnSZ51KhYD8kJ0bsCt5lLnJ87YUpvf2Vkw42usvLfXtEqLMeU2riIvoE1yKj-Oix9E1rcABqejDB095xQUViLUxtPg1ArfYKXdZWX1t81en0Dxwy0dvUm3M3kqbcg2x_01TYYQojARGLjcsmZ7Tquol3aRW6Fpoucys9DMYHOk7GWum7p8eilKtAabQ_R9jTanpOH468pw0hIZNrgQoKwF_uUsZfCm4eTxEbS238utjN9sQNYqLZvGl6j1qzvwiISQjc6Y1eA7GT0ovZgXr5OeuPRfmzsBjzM2ng-AeClNgg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8JAEJ4gGqMH30YUtQe9aDZAd_vYgzEqEAmEEKOGW-1utwmJAgJq_Gv-Omf7sGoiNw5e291N0286-0135huAI2T0GHVJQRTnirDAVARZfUCYr7iQjEsz6kN233Labbfb5Z0cfKS1MDqtMvWJkaMOBlL_Iy-h3XGkNhghlMIkLaJTrZ8Pn4nuIKVPWtN2GrGJNNX7G4Zv47NGFbE-Ns167fbqmiQdBoikFXtCmClMJ_AtGlgKfbgUtqqUpSUYc0KHylBxpuXdkSJZls2EHWA0JO2gLIX0fYx8KK47B_MOxaAnD_OXtXbnJpP8TQpgkIAQ5O00PVONC_eQqBC9Q3CbucT5uStmVPfX6Wy06dVX__PrWoOVhGobF_G3sQ451d-A5W8CjJtAo4wJQ3fViZSGtWi18TSINNQneFlXf2ldXqPXN3DMQGtab8HdTJ56G_L9QV_tgCGECEwkPC6XnNmu4yoa0hA5F5o0ci2_AOUURk8mGuu61cejl6lDa-Q9RN7TyHtOAU6-pgxjgZFpg4sp2l7ia8ZeBnUBTlN7yW7_udju9MUOYREtxms12s09WEKe6Mapd0XIT0Yvah8W5OukNx4dJHZvwMOsbecTlvo-yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+probabilistic+movement+primitives+in+robotics&rft.jtitle=Autonomous+robots&rft.au=Paraschos%2C+Alexandros&rft.au=Christian%2C+Daniel&rft.au=Peters%2C+Jan&rft.au=Neumann%2C+Gerhard&rft.date=2018-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=42&rft.issue=3&rft.spage=529&rft.epage=551&rft_id=info:doi/10.1007%2Fs10514-017-9648-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon