A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model

This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fuzzy systems Vol. 20; no. 6; pp. 1872 - 1887
Main Author: Güler Dincer, Nevin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer Nature B.V
Subjects:
ISSN:1562-2479, 2199-3211
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into account the relationship between the classical time series and lagged values, and thus, it gives the more realistic clustering results. The second one is that FCRMF produces different forecasting values for each data point, while the other fuzzy time series methods produce same forecasting values for many data points. In order to validate the forecasting performance of proposed method and compare it to the other fuzzy time series methods based on fuzzy clustering, six simulation studies and two real-time examples are carried out. According to goodness-of-fit measures, it is observed that FCRMF provides the best forecasting results, especially in cases when time series are not stationary. When considering that fuzzy time series was proposed especially for cases that time series do not satisfy statistical assumptions such as the stationary, this is very important advantage.
AbstractList This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into account the relationship between the classical time series and lagged values, and thus, it gives the more realistic clustering results. The second one is that FCRMF produces different forecasting values for each data point, while the other fuzzy time series methods produce same forecasting values for many data points. In order to validate the forecasting performance of proposed method and compare it to the other fuzzy time series methods based on fuzzy clustering, six simulation studies and two real-time examples are carried out. According to goodness-of-fit measures, it is observed that FCRMF provides the best forecasting results, especially in cases when time series are not stationary. When considering that fuzzy time series was proposed especially for cases that time series do not satisfy statistical assumptions such as the stationary, this is very important advantage.
Author Güler Dincer, Nevin
Author_xml – sequence: 1
  givenname: Nevin
  surname: Güler Dincer
  fullname: Güler Dincer, Nevin
  email: nguler@mu.edu.tr
  organization: Department of Statistics, Faculty of Science, University of Muğla Sıtkı Koçman
BookMark eNp9kMFKAzEQhoNUsNY-gLcFz9FMkk2yJ6nFVqEqaO8h3Z0tK-1uTbZI-_SmbkEQ9DQwfN_Mz39OenVTIyGXwK6BMX0TJDOQUgaGMplpyk5In0OWUcEBeqQPqeKUS52dkWEI1YIJ4EqkSvTJ7Sh5xs9kst3vd8m8WmPyhr7CkDw1Ba6SOxewSJr6CIzpKy49xhtx9U1ckNPSrQIOj3NA5pP7-fiBzl6mj-PRjOYCVEtlDKJ54VAUsEg1mlyYRdyBLGJyZwpVYio0glGlLEGmCgVyjspFJxViQK66sxvffGwxtPa92fo6frQ8E1xCJrWJlO6o3DcheCxtXrWujWFb76qVBWYPfdmuLxv7soe-LIsm_DI3vlo7v_vX4Z0TIlsv0f9k-lv6AjDqfFc
CitedBy_id crossref_primary_10_1007_s00500_021_06259_2
crossref_primary_10_1016_j_advengsoft_2022_103212
crossref_primary_10_1007_s40815_020_00829_6
crossref_primary_10_1016_j_ins_2023_119567
crossref_primary_10_1007_s42979_023_02528_z
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_1109_ACCESS_2020_3012280
crossref_primary_10_1016_j_engappai_2022_104844
crossref_primary_10_1007_s40815_022_01366_0
crossref_primary_10_3233_JIFS_211405
crossref_primary_10_1016_j_engappai_2019_103367
crossref_primary_10_1007_s13042_023_02003_4
crossref_primary_10_1016_j_asoc_2022_109574
crossref_primary_10_1007_s00500_019_04612_0
crossref_primary_10_1016_j_ins_2019_08_023
crossref_primary_10_1007_s40815_019_00690_2
Cites_doi 10.1002/int.20145
10.1016/j.techfore.2005.07.004
10.1016/0165-0114(93)90355-L
10.1016/S0165-0114(97)00121-8
10.1016/S0165-0114(00)00093-2
10.1016/j.camwa.2008.07.033
10.1080/019697202753306479
10.1016/j.asoc.2008.09.002
10.1016/0165-0114(93)90372-O
10.1109/91.236552
10.1016/j.eswa.2009.02.057
10.1016/j.eswa.2011.02.052
10.1016/0165-0114(94)90152-X
10.1109/TSMCB.2005.857093
10.1016/j.eswa.2012.05.040
10.1007/978-1-4757-0450-1
10.1016/0165-0114(94)90067-1
10.1016/0165-0114(95)00220-0
10.1016/j.eswa.2006.12.013
10.1016/S0165-0114(00)00057-9
10.1016/j.eswa.2009.12.006
10.3233/IFS-2010-0470
10.1109/FUZZY.2008.4630617
10.1109/CDC.1978.268028
ContentType Journal Article
Copyright Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s40815-018-0497-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 1887
ExternalDocumentID 10_1007_s40815_018_0497_0
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-421172dae3d1b57e8c38b21114d815a8d6fe537e186f4f1456e3e22e6adae533
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440171900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1562-2479
IngestDate Wed Nov 05 04:16:34 EST 2025
Sat Nov 29 05:19:43 EST 2025
Tue Nov 18 21:18:49 EST 2025
Fri Feb 21 02:32:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Fuzzy time series
Fuzzy clustering
Fuzzy C-Regression Model
Forecasting
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-421172dae3d1b57e8c38b21114d815a8d6fe537e186f4f1456e3e22e6adae533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932419478
PQPubID 2043640
PageCount 16
ParticipantIDs proquest_journals_2932419478
crossref_citationtrail_10_1007_s40815_018_0497_0
crossref_primary_10_1007_s40815_018_0497_0
springer_journals_10_1007_s40815_018_0497_0
PublicationCentury 2000
PublicationDate 20180800
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Huarng (CR7) 2001; 123
Song, Chissom (CR1) 1993; 54
Eğrioğlu, Aladağ, Basaran, Yolcu, Uslu (CR11) 2011; 22
Sullivan, Woodall (CR4) 1994; 64
Eğrioğlu, Aladağ, Yolcu, Uslu, Erilli (CR14) 2011; 38
Lee, Wang, Chen (CR19) 2008; 34
Song, Chissom (CR3) 1994; 62
Huarng (CR8) 2001; 123
Eğrioğlu, Aladağ, Yolcu, Uslu, Basaran (CR21) 2010; 37
Jilani, Burney (CR18) 2007; 34
Huarng, Yu (CR9) 2006; 36
Cheng, Cheng, Wang (CR12) 2008; 34
Song, Chissom (CR2) 1993; 54
Chen (CR16) 2002; 33
Chen, Chung (CR17) 2006; 21
Hathaway, Bezdek (CR22) 1993; 1
Cheng, Chang, Yeh (CR26) 2006; 73
Eğrioğlu, Aladağ, Yolcu (CR15) 2013; 40
CR25
CR24
Eğrioğlu, Aladağ, Yolcu, Uslu, Basaran (CR20) 2009; 36
Li, Cheng, Lin (CR13) 2008; 56
Yolcu, Eğrioğlu, Uslu, Basaran, Aladağ (CR10) 2009; 9
Chen (CR5) 1996; 81
Hwang, Chen, Lee (CR6) 1998; 100
Bezdek (CR23) 1981
LW Lee (497_CR19) 2008; 34
JC Bezdek (497_CR23) 1981
497_CR25
497_CR24
JR Hwang (497_CR6) 1998; 100
K Huarng (497_CR7) 2001; 123
E Eğrioğlu (497_CR11) 2011; 22
SM Chen (497_CR16) 2002; 33
E Eğrioğlu (497_CR14) 2011; 38
K Huarng (497_CR9) 2006; 36
Q Song (497_CR2) 1993; 54
SM Chen (497_CR17) 2006; 21
TA Jilani (497_CR18) 2007; 34
SM Chen (497_CR5) 1996; 81
ST Li (497_CR13) 2008; 56
K Huarng (497_CR8) 2001; 123
CH Cheng (497_CR12) 2008; 34
RJ Hathaway (497_CR22) 1993; 1
U Yolcu (497_CR10) 2009; 9
E Eğrioğlu (497_CR20) 2009; 36
Q Song (497_CR3) 1994; 62
J Sullivan (497_CR4) 1994; 64
E Eğrioğlu (497_CR21) 2010; 37
E Eğrioğlu (497_CR15) 2013; 40
Q Song (497_CR1) 1993; 54
CH Cheng (497_CR26) 2006; 73
References_xml – volume: 21
  start-page: 485
  issue: 5
  year: 2006
  end-page: 501
  ident: CR17
  article-title: Forecasting enrollments based on high-order fuzzy time series and genetic algorithms
  publication-title: Int. J. Int. Syst.
  doi: 10.1002/int.20145
– volume: 73
  start-page: 524
  year: 2006
  end-page: 542
  ident: CR26
  article-title: Entropy-based and trapezoid fuzzification fuzzy time series approaches for forecasting IT project cost
  publication-title: Technol. Forecast. Soc.
  doi: 10.1016/j.techfore.2005.07.004
– volume: 54
  start-page: 1
  year: 1993
  end-page: 9
  ident: CR2
  article-title: Forecasting enrollments with fuzzy time series—part I
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(93)90355-L
– volume: 100
  start-page: 217
  year: 1998
  end-page: 228
  ident: CR6
  article-title: Handling forecasting problems using fuzzy time series
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(97)00121-8
– volume: 123
  start-page: 369
  issue: 3
  year: 2001
  end-page: 386
  ident: CR7
  article-title: Heuristics models of fuzzy time series for forecasting
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(00)00093-2
– volume: 56
  start-page: 3052
  year: 2008
  end-page: 3063
  ident: CR13
  article-title: A FCM-based deterministic forecasting model for fuzzy time series
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2008.07.033
– volume: 33
  start-page: 1
  issue: 1
  year: 2002
  end-page: 16
  ident: CR16
  article-title: Forecasting enrollments based on high-order fuzzy time series
  publication-title: Cybern. Syst.
  doi: 10.1080/019697202753306479
– volume: 9
  start-page: 647
  issue: 2
  year: 2009
  end-page: 651
  ident: CR10
  article-title: A new approach for determining the length of intervals for fuzzy time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.09.002
– volume: 54
  start-page: 269
  year: 1993
  end-page: 277
  ident: CR1
  article-title: Fuzzy time series and its models
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(93)90372-O
– volume: 34
  start-page: 328
  issue: 1
  year: 2007
  end-page: 336
  ident: CR18
  article-title: M-factor high order fuzzy time series forecasting for road accident data
  publication-title: Adv. Soft Comput.
– volume: 1
  start-page: 195
  issue: 3
  year: 1993
  end-page: 204
  ident: CR22
  article-title: Switching regression models and fuzzy clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.236552
– ident: CR25
– volume: 36
  start-page: 10589
  issue: 7
  year: 2009
  end-page: 10594
  ident: CR20
  article-title: A new approach based on artificial neural network for high order multivariate fuzzy time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.057
– volume: 38
  start-page: 10355
  year: 2011
  end-page: 10357
  ident: CR14
  article-title: Fuzzy time series forecasting method based on Gustafson–Kessel fuzzy clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.052
– volume: 64
  start-page: 279
  issue: 3
  year: 1994
  end-page: 293
  ident: CR4
  article-title: A comparison of fuzzy forecasting and Markov model
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(94)90152-X
– volume: 36
  start-page: 328
  issue: 2
  year: 2006
  end-page: 340
  ident: CR9
  article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMCB.2005.857093
– volume: 22
  start-page: 15
  issue: 1
  year: 2011
  end-page: 19
  ident: CR11
  article-title: A new approach based on the optimization of the length of intervals in fuzzy time series
  publication-title: J. Intell. Fuzzy Syst.
– volume: 40
  start-page: 854
  year: 2013
  end-page: 857
  ident: CR15
  article-title: Fuzzy time series forecasting with a novel hybrid approach fuzzy c-means and neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.040
– volume: 34
  start-page: 485
  issue: 1
  year: 2008
  end-page: 501
  ident: CR19
  article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques
  publication-title: Expert Syst. Appl.
– year: 1981
  ident: CR23
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
  doi: 10.1007/978-1-4757-0450-1
– volume: 62
  start-page: 1
  year: 1994
  end-page: 8
  ident: CR3
  article-title: Forecasting enrollments with fuzzy time series—part II
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(94)90067-1
– volume: 81
  start-page: 311
  issue: 3
  year: 1996
  end-page: 319
  ident: CR5
  article-title: Forecasting enrollments based on fuzzy time series
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(95)00220-0
– volume: 34
  start-page: 1235
  year: 2008
  end-page: 1242
  ident: CR12
  article-title: Multi-attribute fuzzy time series method based on fuzzy clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.12.013
– ident: CR24
– volume: 123
  start-page: 387
  issue: 3
  year: 2001
  end-page: 394
  ident: CR8
  article-title: Effective lengths of intervals to improve forecasting in fuzzy time series
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(00)00057-9
– volume: 37
  start-page: 5052
  issue: 7
  year: 2010
  end-page: 5055
  ident: CR21
  article-title: Finding an optimal interval length in high order fuzzy time series
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.006
– volume: 56
  start-page: 3052
  year: 2008
  ident: 497_CR13
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2008.07.033
– volume: 40
  start-page: 854
  year: 2013
  ident: 497_CR15
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.040
– volume: 36
  start-page: 10589
  issue: 7
  year: 2009
  ident: 497_CR20
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.057
– volume: 34
  start-page: 485
  issue: 1
  year: 2008
  ident: 497_CR19
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 5052
  issue: 7
  year: 2010
  ident: 497_CR21
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.006
– volume: 73
  start-page: 524
  year: 2006
  ident: 497_CR26
  publication-title: Technol. Forecast. Soc.
  doi: 10.1016/j.techfore.2005.07.004
– volume: 100
  start-page: 217
  year: 1998
  ident: 497_CR6
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(97)00121-8
– volume: 9
  start-page: 647
  issue: 2
  year: 2009
  ident: 497_CR10
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.09.002
– volume: 1
  start-page: 195
  issue: 3
  year: 1993
  ident: 497_CR22
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.236552
– volume: 62
  start-page: 1
  year: 1994
  ident: 497_CR3
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(94)90067-1
– volume: 123
  start-page: 387
  issue: 3
  year: 2001
  ident: 497_CR8
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(00)00057-9
– volume: 34
  start-page: 328
  issue: 1
  year: 2007
  ident: 497_CR18
  publication-title: Adv. Soft Comput.
– volume: 34
  start-page: 1235
  year: 2008
  ident: 497_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.12.013
– volume: 22
  start-page: 15
  issue: 1
  year: 2011
  ident: 497_CR11
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-2010-0470
– volume: 64
  start-page: 279
  issue: 3
  year: 1994
  ident: 497_CR4
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(94)90152-X
– volume: 123
  start-page: 369
  issue: 3
  year: 2001
  ident: 497_CR7
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/S0165-0114(00)00093-2
– volume: 33
  start-page: 1
  issue: 1
  year: 2002
  ident: 497_CR16
  publication-title: Cybern. Syst.
  doi: 10.1080/019697202753306479
– volume: 81
  start-page: 311
  issue: 3
  year: 1996
  ident: 497_CR5
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(95)00220-0
– volume-title: Pattern Recognition with Fuzzy Objective Function Algorithms
  year: 1981
  ident: 497_CR23
  doi: 10.1007/978-1-4757-0450-1
– volume: 54
  start-page: 269
  year: 1993
  ident: 497_CR1
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(93)90372-O
– ident: 497_CR25
  doi: 10.1109/FUZZY.2008.4630617
– volume: 36
  start-page: 328
  issue: 2
  year: 2006
  ident: 497_CR9
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMCB.2005.857093
– volume: 21
  start-page: 485
  issue: 5
  year: 2006
  ident: 497_CR17
  publication-title: Int. J. Int. Syst.
  doi: 10.1002/int.20145
– volume: 54
  start-page: 1
  year: 1993
  ident: 497_CR2
  publication-title: Fuzzy Set Syst.
  doi: 10.1016/0165-0114(93)90355-L
– ident: 497_CR24
  doi: 10.1109/CDC.1978.268028
– volume: 38
  start-page: 10355
  year: 2011
  ident: 497_CR14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.052
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.1934547
Snippet This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1872
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Intelligence
Data points
Engineering
Forecasting
Fuzzy sets
Goodness of fit
Management Science
Methods
Operations Research
Performance evaluation
Production methods
Regression models
Statistical analysis
Time series
Universe
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6J8yQMTyCJxnNiZKqiomCoEHdgix3YQUpUCLUjw67lznRaQYGFNbEu5O_td7PN7hJxUmatknhpmBUqYqdKwPMtTxp2KLNfcSq292ITs99X9fX4TNtzGoayyWRP9Qm1HBvfIzwGWAGxyIVXn6ZmhahSergYJjUWyhCwJsS_du5vFE5LJfbnHCdiPhGmz-E1iZGKZ00_B3E-SAFd-JUcNn8gLncFfDmdcyLw5GMXbdwLgFCvfFIM0W7LoO7TN89UfR6weuXrr__3mDbIWclZ6MQ2yTbLg6i2y-oXJcJt0Ligsl7T3-vHxTvFaCcVtNzemqLU2pJeAlZaO6tCgy27dw7QAt5622CGD3tWge82CNgMzSZxNGJgVUh-rXWLjMpVOmUSV8CwWFoyilc0qlybSxSqrRBVDmuYSx7nLNPSBFHOXtOpR7fYIlalR2oi0FGUFuZ3KjTHK6bLiuhJSmjaJGqsWJvCWo3zGsJgxLntHFOCIAh1RRG1yOuvyNCXt-KvxYWP8IszfcTG3fJucNe6bv_51sP2_BzsgK9zHCxYQHpLW5OXVHZFl8zZ5HL8c--D9BHuW60I
  priority: 102
  providerName: ProQuest
Title A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model
URI https://link.springer.com/article/10.1007/s40815-018-0497-0
https://www.proquest.com/docview/2932419478
Volume 20
WOSCitedRecordID wos000440171900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: P5Z
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: K7-
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: M7S
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50-qAP_hans-TBJyXQpmmTPskmG4IwxhQZvpQ0TUWQKm4K7q_30rXdFBX0pQ_tpaSXS-5Lc3cfwEkWmkxEgaYptxRmMtE0CqOAMiPdlCmWCqUKsgnR78vRKBqUedzjKtq9OpIsVuo62Y2j97KBZpIiqhUU9-kr6O2k5WsYXt_WRmQryC0kb6LDt1XSaqP1PVt-ZV5zCie875c-qli-LXGPW7Cb4daGUcZFVJ2GfteLz_5sDlK_nKsW7qq3-a8P3YKNEp2S9syctmHJ5DuwvlCzcBfO2wQXRtJ7nU7fiU0gIfYHmxkTy6r2SDroFVPylJcCF3Ro7mehtvlMYg9uet2bi0tasjBQ7XvhhKIuEeSkyviplwTCSO3LBO95PMVuKpmGmQl8YTwZZjzzEJAZ3zBmQoVtEEzuQyN_ys0BEBFoqTQPEp5kiOJkpLWWRiUZUxkXQjfBrVQZ67JCuSXKeIzr2sqFamJUTWxVE7tNOK2bPM_Kc_wm3KrGJy5n6jhGuIMgJuJCNuGsGo_54x9fdvgn6SNYY8WA2sjBFjQmL6_mGFb12-Rh_OLASqfbHwwdWL4S1LHhp9d4HQR3TmHaHwPP5Ps
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH8haKIe_ECNq4g9wEXTONN2pp2DIQhuIAsbY_bArem0HWNCZpFdNPA_-T_63nzsggncOHidaZvMvM-27_1-AJtVHitdZJ4HRRRmpvS8yIuMi2iSIJwI2rmGbEKPx-b4uPi6An_6Xhgqq-x9YuOow9TTGflHDEsYbAqlzfbpT06sUXS72lNotGoxihe_ccs2-3Swh_LdEmL4ZbK7zztWAe5lms-5wi2PFsFFGdIy09F4aUp8lqpg0syZkFcxkzqmJq9UlWKCEWUUIuYO52R0_oke_56SRpNZjTRfqC9h111pG8VUg_DZFuYiUwJ-WaJdoauRsouOTeAgyqCk4VXDTZXgQumiv4elZj-F0ZsK7QzHrF7z5HokXabH_9zoNoFy-OQ_-8VP4XGXkbOd1oSewUqs1-DRFZzG57C9wzAYsOH55eUFo6YZRoeKccaISe6EfcZMILBp3Q3Y5d_i97a8uG5HvIDJXXzAS1itp3V8BUxn3jivslKVFWaupvDem-jKSrhKae0HkPRCtL5DZSdykBO7wJNu5G5R7pbkbpMBvF9MOW0hSW4bvN7L2nbeaWaXgh7Ah15blq9vXOz17Yu9gwf7k6NDe3gwHr2Bh6JRVSqVXIfV-dl5fAv3_a_5j9nZRmM3DOwdK9FfkehGXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIvrgXZxOzYNPSnBN0yZ9Ep0ORRlDh-ytpLmIMLrhpqC_3pPeNkUF8bVNSntykvOlOef7EDq0obE8ChTRzEmYiUSRKIwCQo1oaCqp5lJmYhO83Ra9XtQpdE5HZbZ7eSSZ1zQ4lqZ0fDLU9qQqfGMQyVzSmSCAcDmBPfscc3n0brt-_1A5lGOTmyrkhODvGNMqB_Y9R8Uy4Z-Cye_7RbzKlnIn4tPIlM5gm0MJZTwqT0a_e4vPsW0CWL-csWahq7Xy749eRcsFasVnuZutoRmTrqOlKS7DDXR6hmHBxK2X9_c37ApLsPvxZkbYqa318TlES40HadGgSe7MY56Cm-YtNlG3ddltXpFCnYEo3wvHBOwK4EdL42svCbgRyhcJXPOYhteUQofWBD43nggtsx4ANeMbSk0ooQ-AzC00mw5Ss40wD5SQigUJSyygOxEppYSRiaXSMs5VDTVKs8aqYC53Ahr9uOJczkwTg2liZ5q4UUNHVZdhTtvxW-N6OVZxMYNHMcAgADcR46KGjsuxmdz-8WE7f2p9gBY6F6349rp9s4sWaTa2LrmwjmbHzy9mD82r1_HT6Hk_8-sP0OnsYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Fuzzy+Time+Series+Model+Based+on+Fuzzy+C-Regression+Model&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=G%C3%BCler+Dincer%2C+Nevin&rft.date=2018-08-01&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=20&rft.issue=6&rft.spage=1872&rft.epage=1887&rft_id=info:doi/10.1007%2Fs40815-018-0497-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40815_018_0497_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon