A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model
This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into a...
Uloženo v:
| Vydáno v: | International journal of fuzzy systems Ročník 20; číslo 6; s. 1872 - 1887 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1562-2479, 2199-3211 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into account the relationship between the classical time series and lagged values, and thus, it gives the more realistic clustering results. The second one is that FCRMF produces different forecasting values for each data point, while the other fuzzy time series methods produce same forecasting values for many data points. In order to validate the forecasting performance of proposed method and compare it to the other fuzzy time series methods based on fuzzy clustering, six simulation studies and two real-time examples are carried out. According to goodness-of-fit measures, it is observed that FCRMF provides the best forecasting results, especially in cases when time series are not stationary. When considering that fuzzy time series was proposed especially for cases that time series do not satisfy statistical assumptions such as the stationary, this is very important advantage. |
|---|---|
| AbstractList | This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in comparison with existing fuzzy time series model based on fuzzy clustering. The first one is that FCRMF partitions data set by taking into account the relationship between the classical time series and lagged values, and thus, it gives the more realistic clustering results. The second one is that FCRMF produces different forecasting values for each data point, while the other fuzzy time series methods produce same forecasting values for many data points. In order to validate the forecasting performance of proposed method and compare it to the other fuzzy time series methods based on fuzzy clustering, six simulation studies and two real-time examples are carried out. According to goodness-of-fit measures, it is observed that FCRMF provides the best forecasting results, especially in cases when time series are not stationary. When considering that fuzzy time series was proposed especially for cases that time series do not satisfy statistical assumptions such as the stationary, this is very important advantage. |
| Author | Güler Dincer, Nevin |
| Author_xml | – sequence: 1 givenname: Nevin surname: Güler Dincer fullname: Güler Dincer, Nevin email: nguler@mu.edu.tr organization: Department of Statistics, Faculty of Science, University of Muğla Sıtkı Koçman |
| BookMark | eNp9kMFKAzEQhoNUsNY-gLcFz9FMkk2yJ6nFVqEqaO8h3Z0tK-1uTbZI-_SmbkEQ9DQwfN_Mz39OenVTIyGXwK6BMX0TJDOQUgaGMplpyk5In0OWUcEBeqQPqeKUS52dkWEI1YIJ4EqkSvTJ7Sh5xs9kst3vd8m8WmPyhr7CkDw1Ba6SOxewSJr6CIzpKy49xhtx9U1ckNPSrQIOj3NA5pP7-fiBzl6mj-PRjOYCVEtlDKJ54VAUsEg1mlyYRdyBLGJyZwpVYio0glGlLEGmCgVyjspFJxViQK66sxvffGwxtPa92fo6frQ8E1xCJrWJlO6o3DcheCxtXrWujWFb76qVBWYPfdmuLxv7soe-LIsm_DI3vlo7v_vX4Z0TIlsv0f9k-lv6AjDqfFc |
| CitedBy_id | crossref_primary_10_1007_s00500_021_06259_2 crossref_primary_10_1016_j_advengsoft_2022_103212 crossref_primary_10_1007_s40815_020_00829_6 crossref_primary_10_1016_j_ins_2023_119567 crossref_primary_10_1007_s42979_023_02528_z crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_1109_ACCESS_2020_3012280 crossref_primary_10_1016_j_engappai_2022_104844 crossref_primary_10_1007_s40815_022_01366_0 crossref_primary_10_3233_JIFS_211405 crossref_primary_10_1016_j_engappai_2019_103367 crossref_primary_10_1007_s13042_023_02003_4 crossref_primary_10_1016_j_asoc_2022_109574 crossref_primary_10_1007_s00500_019_04612_0 crossref_primary_10_1016_j_ins_2019_08_023 crossref_primary_10_1007_s40815_019_00690_2 |
| Cites_doi | 10.1002/int.20145 10.1016/j.techfore.2005.07.004 10.1016/0165-0114(93)90355-L 10.1016/S0165-0114(97)00121-8 10.1016/S0165-0114(00)00093-2 10.1016/j.camwa.2008.07.033 10.1080/019697202753306479 10.1016/j.asoc.2008.09.002 10.1016/0165-0114(93)90372-O 10.1109/91.236552 10.1016/j.eswa.2009.02.057 10.1016/j.eswa.2011.02.052 10.1016/0165-0114(94)90152-X 10.1109/TSMCB.2005.857093 10.1016/j.eswa.2012.05.040 10.1007/978-1-4757-0450-1 10.1016/0165-0114(94)90067-1 10.1016/0165-0114(95)00220-0 10.1016/j.eswa.2006.12.013 10.1016/S0165-0114(00)00057-9 10.1016/j.eswa.2009.12.006 10.3233/IFS-2010-0470 10.1109/FUZZY.2008.4630617 10.1109/CDC.1978.268028 |
| ContentType | Journal Article |
| Copyright | Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| Copyright_xml | – notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s40815-018-0497-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3211 |
| EndPage | 1887 |
| ExternalDocumentID | 10_1007_s40815_018_0497_0 |
| GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-421172dae3d1b57e8c38b21114d815a8d6fe537e186f4f1456e3e22e6adae533 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440171900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1562-2479 |
| IngestDate | Wed Nov 05 04:16:34 EST 2025 Sat Nov 29 05:19:43 EST 2025 Tue Nov 18 21:18:49 EST 2025 Fri Feb 21 02:32:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Fuzzy time series Fuzzy clustering Fuzzy C-Regression Model Forecasting Time series |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-421172dae3d1b57e8c38b21114d815a8d6fe537e186f4f1456e3e22e6adae533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2932419478 |
| PQPubID | 2043640 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2932419478 crossref_citationtrail_10_1007_s40815_018_0497_0 crossref_primary_10_1007_s40815_018_0497_0 springer_journals_10_1007_s40815_018_0497_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20180800 2018-8-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of fuzzy systems |
| PublicationTitleAbbrev | Int. J. Fuzzy Syst |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Huarng (CR7) 2001; 123 Song, Chissom (CR1) 1993; 54 Eğrioğlu, Aladağ, Basaran, Yolcu, Uslu (CR11) 2011; 22 Sullivan, Woodall (CR4) 1994; 64 Eğrioğlu, Aladağ, Yolcu, Uslu, Erilli (CR14) 2011; 38 Lee, Wang, Chen (CR19) 2008; 34 Song, Chissom (CR3) 1994; 62 Huarng (CR8) 2001; 123 Eğrioğlu, Aladağ, Yolcu, Uslu, Basaran (CR21) 2010; 37 Jilani, Burney (CR18) 2007; 34 Huarng, Yu (CR9) 2006; 36 Cheng, Cheng, Wang (CR12) 2008; 34 Song, Chissom (CR2) 1993; 54 Chen (CR16) 2002; 33 Chen, Chung (CR17) 2006; 21 Hathaway, Bezdek (CR22) 1993; 1 Cheng, Chang, Yeh (CR26) 2006; 73 Eğrioğlu, Aladağ, Yolcu (CR15) 2013; 40 CR25 CR24 Eğrioğlu, Aladağ, Yolcu, Uslu, Basaran (CR20) 2009; 36 Li, Cheng, Lin (CR13) 2008; 56 Yolcu, Eğrioğlu, Uslu, Basaran, Aladağ (CR10) 2009; 9 Chen (CR5) 1996; 81 Hwang, Chen, Lee (CR6) 1998; 100 Bezdek (CR23) 1981 LW Lee (497_CR19) 2008; 34 JC Bezdek (497_CR23) 1981 497_CR25 497_CR24 JR Hwang (497_CR6) 1998; 100 K Huarng (497_CR7) 2001; 123 E Eğrioğlu (497_CR11) 2011; 22 SM Chen (497_CR16) 2002; 33 E Eğrioğlu (497_CR14) 2011; 38 K Huarng (497_CR9) 2006; 36 Q Song (497_CR2) 1993; 54 SM Chen (497_CR17) 2006; 21 TA Jilani (497_CR18) 2007; 34 SM Chen (497_CR5) 1996; 81 ST Li (497_CR13) 2008; 56 K Huarng (497_CR8) 2001; 123 CH Cheng (497_CR12) 2008; 34 RJ Hathaway (497_CR22) 1993; 1 U Yolcu (497_CR10) 2009; 9 E Eğrioğlu (497_CR20) 2009; 36 Q Song (497_CR3) 1994; 62 J Sullivan (497_CR4) 1994; 64 E Eğrioğlu (497_CR21) 2010; 37 E Eğrioğlu (497_CR15) 2013; 40 Q Song (497_CR1) 1993; 54 CH Cheng (497_CR26) 2006; 73 |
| References_xml | – volume: 21 start-page: 485 issue: 5 year: 2006 end-page: 501 ident: CR17 article-title: Forecasting enrollments based on high-order fuzzy time series and genetic algorithms publication-title: Int. J. Int. Syst. doi: 10.1002/int.20145 – volume: 73 start-page: 524 year: 2006 end-page: 542 ident: CR26 article-title: Entropy-based and trapezoid fuzzification fuzzy time series approaches for forecasting IT project cost publication-title: Technol. Forecast. Soc. doi: 10.1016/j.techfore.2005.07.004 – volume: 54 start-page: 1 year: 1993 end-page: 9 ident: CR2 article-title: Forecasting enrollments with fuzzy time series—part I publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(93)90355-L – volume: 100 start-page: 217 year: 1998 end-page: 228 ident: CR6 article-title: Handling forecasting problems using fuzzy time series publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(97)00121-8 – volume: 123 start-page: 369 issue: 3 year: 2001 end-page: 386 ident: CR7 article-title: Heuristics models of fuzzy time series for forecasting publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(00)00093-2 – volume: 56 start-page: 3052 year: 2008 end-page: 3063 ident: CR13 article-title: A FCM-based deterministic forecasting model for fuzzy time series publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2008.07.033 – volume: 33 start-page: 1 issue: 1 year: 2002 end-page: 16 ident: CR16 article-title: Forecasting enrollments based on high-order fuzzy time series publication-title: Cybern. Syst. doi: 10.1080/019697202753306479 – volume: 9 start-page: 647 issue: 2 year: 2009 end-page: 651 ident: CR10 article-title: A new approach for determining the length of intervals for fuzzy time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.002 – volume: 54 start-page: 269 year: 1993 end-page: 277 ident: CR1 article-title: Fuzzy time series and its models publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(93)90372-O – volume: 34 start-page: 328 issue: 1 year: 2007 end-page: 336 ident: CR18 article-title: M-factor high order fuzzy time series forecasting for road accident data publication-title: Adv. Soft Comput. – volume: 1 start-page: 195 issue: 3 year: 1993 end-page: 204 ident: CR22 article-title: Switching regression models and fuzzy clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.236552 – ident: CR25 – volume: 36 start-page: 10589 issue: 7 year: 2009 end-page: 10594 ident: CR20 article-title: A new approach based on artificial neural network for high order multivariate fuzzy time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.057 – volume: 38 start-page: 10355 year: 2011 end-page: 10357 ident: CR14 article-title: Fuzzy time series forecasting method based on Gustafson–Kessel fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.052 – volume: 64 start-page: 279 issue: 3 year: 1994 end-page: 293 ident: CR4 article-title: A comparison of fuzzy forecasting and Markov model publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(94)90152-X – volume: 36 start-page: 328 issue: 2 year: 2006 end-page: 340 ident: CR9 article-title: Ratio-based lengths of intervals to improve fuzzy time series forecasting publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMCB.2005.857093 – volume: 22 start-page: 15 issue: 1 year: 2011 end-page: 19 ident: CR11 article-title: A new approach based on the optimization of the length of intervals in fuzzy time series publication-title: J. Intell. Fuzzy Syst. – volume: 40 start-page: 854 year: 2013 end-page: 857 ident: CR15 article-title: Fuzzy time series forecasting with a novel hybrid approach fuzzy c-means and neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.040 – volume: 34 start-page: 485 issue: 1 year: 2008 end-page: 501 ident: CR19 article-title: Temperature prediction and TAIFEX forecasting based on high-order fuzzy logical relationships and genetic simulated annealing techniques publication-title: Expert Syst. Appl. – year: 1981 ident: CR23 publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms doi: 10.1007/978-1-4757-0450-1 – volume: 62 start-page: 1 year: 1994 end-page: 8 ident: CR3 article-title: Forecasting enrollments with fuzzy time series—part II publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(94)90067-1 – volume: 81 start-page: 311 issue: 3 year: 1996 end-page: 319 ident: CR5 article-title: Forecasting enrollments based on fuzzy time series publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(95)00220-0 – volume: 34 start-page: 1235 year: 2008 end-page: 1242 ident: CR12 article-title: Multi-attribute fuzzy time series method based on fuzzy clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.12.013 – ident: CR24 – volume: 123 start-page: 387 issue: 3 year: 2001 end-page: 394 ident: CR8 article-title: Effective lengths of intervals to improve forecasting in fuzzy time series publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(00)00057-9 – volume: 37 start-page: 5052 issue: 7 year: 2010 end-page: 5055 ident: CR21 article-title: Finding an optimal interval length in high order fuzzy time series publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.006 – volume: 56 start-page: 3052 year: 2008 ident: 497_CR13 publication-title: Comput. Math Appl. doi: 10.1016/j.camwa.2008.07.033 – volume: 40 start-page: 854 year: 2013 ident: 497_CR15 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.040 – volume: 36 start-page: 10589 issue: 7 year: 2009 ident: 497_CR20 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.057 – volume: 34 start-page: 485 issue: 1 year: 2008 ident: 497_CR19 publication-title: Expert Syst. Appl. – volume: 37 start-page: 5052 issue: 7 year: 2010 ident: 497_CR21 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.006 – volume: 73 start-page: 524 year: 2006 ident: 497_CR26 publication-title: Technol. Forecast. Soc. doi: 10.1016/j.techfore.2005.07.004 – volume: 100 start-page: 217 year: 1998 ident: 497_CR6 publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(97)00121-8 – volume: 9 start-page: 647 issue: 2 year: 2009 ident: 497_CR10 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2008.09.002 – volume: 1 start-page: 195 issue: 3 year: 1993 ident: 497_CR22 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.236552 – volume: 62 start-page: 1 year: 1994 ident: 497_CR3 publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(94)90067-1 – volume: 123 start-page: 387 issue: 3 year: 2001 ident: 497_CR8 publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(00)00057-9 – volume: 34 start-page: 328 issue: 1 year: 2007 ident: 497_CR18 publication-title: Adv. Soft Comput. – volume: 34 start-page: 1235 year: 2008 ident: 497_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.12.013 – volume: 22 start-page: 15 issue: 1 year: 2011 ident: 497_CR11 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-2010-0470 – volume: 64 start-page: 279 issue: 3 year: 1994 ident: 497_CR4 publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(94)90152-X – volume: 123 start-page: 369 issue: 3 year: 2001 ident: 497_CR7 publication-title: Fuzzy Set Syst. doi: 10.1016/S0165-0114(00)00093-2 – volume: 33 start-page: 1 issue: 1 year: 2002 ident: 497_CR16 publication-title: Cybern. Syst. doi: 10.1080/019697202753306479 – volume: 81 start-page: 311 issue: 3 year: 1996 ident: 497_CR5 publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(95)00220-0 – volume-title: Pattern Recognition with Fuzzy Objective Function Algorithms year: 1981 ident: 497_CR23 doi: 10.1007/978-1-4757-0450-1 – volume: 54 start-page: 269 year: 1993 ident: 497_CR1 publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(93)90372-O – ident: 497_CR25 doi: 10.1109/FUZZY.2008.4630617 – volume: 36 start-page: 328 issue: 2 year: 2006 ident: 497_CR9 publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMCB.2005.857093 – volume: 21 start-page: 485 issue: 5 year: 2006 ident: 497_CR17 publication-title: Int. J. Int. Syst. doi: 10.1002/int.20145 – volume: 54 start-page: 1 year: 1993 ident: 497_CR2 publication-title: Fuzzy Set Syst. doi: 10.1016/0165-0114(93)90355-L – ident: 497_CR24 doi: 10.1109/CDC.1978.268028 – volume: 38 start-page: 10355 year: 2011 ident: 497_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.052 |
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
| Score | 2.1934547 |
| Snippet | This study proposes a new fuzzy time series model based on Fuzzy C-Regression Model clustering algorithm (FCRMF). There are two major superiorities of FCRMF in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1872 |
| SubjectTerms | Algorithms Artificial Intelligence Clustering Computational Intelligence Data points Engineering Forecasting Fuzzy sets Goodness of fit Management Science Methods Operations Research Performance evaluation Production methods Regression models Statistical analysis Time series Universe |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG1EoyAMTyCJOnDiZqlJRMVUIOnSLEttBSFVa-kCiv54712kLEiysiW0pd-e7y_n8fYRch8LnudQ-85ROGFiIYokuFNMFV1hP5jLTlmxCdrtxv588uYLbxLVVVj7ROmo9VFgjv4OwBMEmETJujt4Zskbh6aqj0NgkW4iSwG3r3svSnhBMbu0eJ8R-BExb2m_AEYllBT8Fez8IXLiynhw5fDxLdAZ_OT7zhUyqg1G8fScgnGLnW8wgzZbM-x7aVvnqjyNWG7k6-__95gOy53JW2loY2SHZMOUR2V1DMjwmzRYFd0k7s_n8k-K1EoplNzOhyLU2oPcQKzUdlm5Amz2b10UDbrkYcUJ6nYde-5E5bgYGKoymDMQKqY_OTKB5HkoTqyDO4RkXGoSSxToqTBhIw-OoEAWHNM0ExvdNlMEcSDFPSa0cluaMUOmZyCt0Ib2MiywL81AlRsR5xHVhhO_ViVdJNVUOtxzpMwbpEnHZKiIFRaSoiBSm3CynjBagHX8NblTCT93-naQrydfJbaW-1etfFzv_e7ELsuNbe8EGwgapTcczc0m21cf0bTK-ssb7BbH_6rU priority: 102 providerName: ProQuest |
| Title | A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model |
| URI | https://link.springer.com/article/10.1007/s40815-018-0497-0 https://www.proquest.com/docview/2932419478 |
| Volume | 20 |
| WOSCitedRecordID | wos000440171900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2199-3211 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: K7- dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2199-3211 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: P5Z dateStart: 20150301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2199-3211 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: BENPR dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Engineering Database (NC LIVE) customDbUrl: eissn: 2199-3211 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: M7S dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6edCD3-J0lhw8KYGmTZv0JNvYEIQxtiHDS2mbVITRyboJ7q_3pV-booJeemhfSvveS94vycvvIXTtMIuGXFrEjKRHwEMi4sk4IjKmkV5PpjyQWbEJ3u-LycQbFOe40zLbvdySzEbq6rAbg-ilE80EAVTLCczT6xDthK7XMBw9Vk6kGeQ2Dm9CwNcsaZXT2lTTr6w5p6DD23YRo7LhWxfuMbPqZjC1sYjFuFfuhn73FZ_j2RqkftlXzcJV7-BfP3qI9gt0ilu5Ox2hLZUco70NzsITdNfCMDDi3nK1esf6AAnWC2wqxbqq2hS3ISpKPEsKgQ4Zquc81TbJJU7RuNcdd-5JUYWBgLHcBQFdAsiRgbIlDR2uRGSLEO5RJuEzAyHdWDk2V1S4MYspADJlK8tSbgBtAEyeoVoyS9Q5wtxUrhnLmJsBZUHghE7kKSZCl8pYMctsILNUpR8VDOW6UMbUr7iVM9X4oBpfq8aHJjdVk9ecnuM34WZpH7_oqakPcAdAjMe4aKDb0h7rxz--7OJP0pdo18oMqjMHm6i2mC_VFdqJ3hYv6dxA9Xa3PxgaaPuBE0Onn47gOnCejMy1PwAmC-Ru |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hitRyoNAWlUeLD_QCsho7TuwcKkRpV6CFFUJ74GYltoMqoSywSyv4T_2PzOSxSyuVG4deE9t5zOMbj-cBsJ0oKQrtJY-czzhyiOOZLx33pXDkTxY693WzCT0YmPPz7HQOfne5MBRW2enEWlH7kSMf-WeEJQSbTGmzd3XNqWsUna52LTQatuiHu1-4ZRt_OfqG9P0kZe_78OCQt10FOD48nXB8OQRtn4fYiyLRwbjYFHhNKG9EkhufliGJdRAmLVUp0MAIcZAypDnOScj_iRr_hYqNJrHqaz5lX6pd9yhtFE0Nqs82FZdYUOGXWbUrVDVx3KJjDRzUMiiq-6rhpkpyqXTWncNSsp9C9KZAO8PRqtc8-hNJZ-bxXye6NVD2Xv9nv3gZllqLnO03IrQCc6F6A4uP6jS-hb19hmDAerf393eMkmYYORXDmFEnuUv2FS0Bz0ZVO-CAn4WLJry4aka8g-FzfMAqzFejKrwHpqOQRqUvdZQLledJkbgsKFOkwpdByWgNoo6I1rVV2ak5yKWd1pOu6W6R7pbobnHKznTKVVOS5KnBmx2tbaudxnZG6DXY7bhldvufi60_vdgWvDwcnhzb46NBfwNeyZpVKVRyE-YnN7fhAyy4n5Mf45uPtdwwsM_MRA9zc0XP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3E6NQ8-KWFNmzbtk8zpUJQxdMjeStskIoxurJ3g_nov_doUFcTXNinp3SX3S3L3O4TObGbSkAuTGJHwCFhIRDyhIiIUjfR5MuWByIpN8G7XHQy8XlHnNCmj3csryTynQbM0xWlzLFSzSnxj4Ml00JlLAOFyAnv2Zabj6PV2_em5MijNJreQyAnOXzOmVQZsUU3FMuefgslvWYW_ypZyXcTHyCqdwTbHJCbjXnkz-t0oPvu2OWD9cseaua7O5r9_egttFKgVt3Iz20ZLMt5B6wtchrvosoVhwcSd6Wz2jnViCdYHbzLButraEF-BtxR4FBcN2uRRvuQhuHHeYg_1Ozf99i0pqjMQUKKTEpArgB8RSEvQ0ObSjSw3hGeUCRhm4ApHSdvikrqOYooCUJOWNE3pBNAHQOY-qsWjWB4gzA3pGEoobgSUBYEd2pEnmRs6VCjJTKOOjFKsflQwl-sCGkO_4lzOROODaHwtGh-6nFddxjltx2-NG6Wu_GIGJz7AIAA3HuNuHV2Uupm__vFjh39qfYpWe9cd_-Gue3-E1sxMtzq4sIFq6WQqj9FK9Ja-JpOTzK4_APjI69Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Fuzzy+Time+Series+Model+Based+on+Fuzzy+C-Regression+Model&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=G%C3%BCler+Dincer%2C+Nevin&rft.date=2018-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=20&rft.issue=6&rft.spage=1872&rft.epage=1887&rft_id=info:doi/10.1007%2Fs40815-018-0497-0&rft.externalDocID=10_1007_s40815_018_0497_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |